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Abstract In elastic media, finite difference (FD) im-

plementations of free surface (FS) boundary conditions

on Partly-Staggered Grids (PSG) use the highly dis-

persive vacuum formulation (VPSG). The FS bound-

ary is embedded into a “vacuum” grid layer (null Lame

constants and negligible density values) where the dis-

cretized equations of motion allow computing surface

displacements. We place a new set of Compound (stress-

displacement) nodes along a planar FS and use unilat-

eral mimetic FD discretization of the zero-traction con-

ditions for displacement computation (MPSG). At inte-

rior nodes, MPSG reduces to standard VPSG methods

and applies fourth-order centered FD along cell diago-

nals for staggered differentiation combined with nodal

second-order FD in time. We perform a dispersion anal-

ysis of these methods on a Lamb’s problem and estimate

dispersion curves from the phase difference of windowed

numerical Rayleigh pulses at two FS receivers. For a

given grid sampling criterion (e.g., 6 or 10 nodes per

reference S wavelength λS), MPSG dispersion errors are
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only a quarter of the VPSG method. We also quantify

root-mean-square (RMS) misfits of numerical time se-

ries relative to analytical waveforms. MPSG RMS mis-

fits barely exceed 10% when 9 nodes sample the min-

imum S wavelength λSMIN in transit (along distances

∼ 145λSMIN ). In same tests, VPSG RMS misfits exceed

70%. We additionally compare MPSG to a consistently

fourth-order mimetic method designed on a Standard

Staggered Grid. The latter equates former’s dispersion

errors on grids twice denser, and shows higher RMS

precision only on grids with 6 or less nodes per λSMIN .
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1 Introduction

Modern finite differences (FD) methods in computa-

tional seismology use a Cartesian Staggered Grid (SG)

for domain and wavefield discretization. In a SG, ma-

terial parameters are defined on individual rectangular

meshes displaced by half of the grid spacing in one or

more directions. Similar staggering distribution is used

to locate each wavefield at the center of those it de-

pends upon, and numerical differentiation gains accu-

racy by halving the grid spacing. A widely used SG

on elastic wave propagation collocates each displace-

ment (or particle velocity) component and each shear

stress at a distinct grid site. Only normal stresses are

placed at the same grid location given its common de-

pendency on all diagonal strain components. This grid

has been referred as Standard Staggered Grid (SSG)

by Moczo et al. [27] and Saenger et al. [36]. Pioneering
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works of Madariaga [24], Virieux [37][38], Levander [21],

Graves [16], and Kristek et al. [19] have brought clar-

ity on the implementation details for precise modeling

of elastic motion in 2-D and 3-D heterogeneous media

that might include subsurface topography and planar

Free Surface (FS) boundaries. The competing type of

SG is the Partly-Staggered Grid (PSG), so called be-

cause all displacement (or particle velocity) components

share the same grid location, that is displaced by half

of the grid spacing in all coordinate directions of the

common site of all stress components. Early applica-

tions of PSG on modeling fault rupture propagation

were performed by Andrews [2] and Day [11][12], in 2-

D and 3-D media, respectively. Later, Zhang [40] devel-

oped a 2-D velocity-stress FD method for elastic motion

on PSG. Saenger et al. [36], Saenger and Bohlen [35],

and Bohlen and Saenger [3] used PSG in simulations of

elastic and viscoelastic wave propagation in the pres-

ence of material heterogeneities, cracks, and FS. In-

stead of PSG, these authors employed the alternative

names of “rotated” and “modified” SG to refer to this

grid type attending to the numerical differentiation pro-

cedure along cell diagonals. Recently, Cruz-Atienza et

al. [9][10] have modeled dynamic earthquake ruptures

along non planar faults employing PSG.

Modeling of FS boundary conditions has been a

long explored component of FD SG methods because

the process of zeroing traction components and com-

puting particle displacements (or velocities) at this in-

terface is highly dependent on the distribution of ma-

terial properties and wave fields throughout the grid.

In the classical vacuum formulism, a thin grid layer is

defined above this boundary where Lame parameters

are zeroed. Thus, the traction vector implicitly vanishes

along all stress tensor components, including those that

are not constrained by the zero traction condition. In

most accurate implementations, the density is set in

this “vacuum” layer at a value much smaller than the

actual density of the solid layer underneath (of the or-

der of 10−3 kgm3 ), and displacements (or velocities) are

locally computed by using second-order discretizations

of the equation of motion. The use of higher-order ap-

proximations leads to numerical instabilities on both

types of grids SSG ([16]) and PSG ([35][14]). Some early

applications on the former grids showed significant in-

accuracies of the vacuum method, and authors claim

that keeping a nonzero density value above the FS im-

plies an inappropriate reflection coefficient along this

boundary, and then energy leaks to the fictitious vac-

uum ([16][39]). As a reference test, Graves [16] presents

3-D simulations of surface waves induced by a superfi-

cial source along a planar FS, where the amplitude of

Rayleigh pulses is poorly modeled at short epicentral

distances of approximately 9λSMIN (minimum S wave-

length), even though he employed a SSG that supported

9.2 grid points per λSMIN . After Graves’s work, the use

of the vacuum formulation was largely abandoned on

SSG in favor of emerging and more precise FS imple-

mentations like the Imaged-Stress Method and the Ad-

justed FD Approximation, both commented upon be-

low. On the other hand, the vacuum method represents

the dominant implementation strategy of FS bound-

aries into current elastic and viscoelastic wave prop-

agation FD methods on PSG ([36][3][14][8]). On 2-D

tests along planar FS, Bohlen and Saenger [3] mitigate

the accuracy loss driven by grid dispersion on Rayleigh

waves by refining the grid up to fit at least 17 nodes

per minimum Rayleigh wavelength λRMIN , and obtain

precise propagation along distances of approximately

18λRMIN . These authors employed even more refined

PSG on experiments with dipping planar FS. To gain

accuracy on the vacuum FS implementation with vari-

able topography on coarser grids, Lombard et al. [22]

propose a modified 2-D PSG with all wavefield variables

located at a common grid point (grid is no longer stag-

gered), time stepped by a combination of extrapolation

and integration techniques. On tests where a straight

FS is inclined by various angles, they achieved stable

and accurate results using 10 grid points per λSMIN

along propagating distances of 50λSMIN .

A less dispersive FD implementation of planar FS

on SSG is the stress-imaging formulation introduced in

elastic media by Levander [21] in 2-D, and later adapted

to 3-D by Rodrigues [31] and Graves [16]. This approach

also extends the SG beyond the FS boundary for a few

grid levels, and uses this boundary as an antisymmetry
mirror for stress components conditioned by the nullity

of the traction vector. At FS grid points, such stresses

are directly zeroed, while their values are chosen as the

antisymmetric image of their interior counterparts at

nodes above of it (to average zero at FS). Remaining

stresses and particle displacements (or velocities) in the

FS grid vicinity are computed by FD discretizations of

stress-strain and momentum equations, where stencils

crossing the FS are limited to second-order (see [19], for

implementation details). Planar FS can be naturally ac-

commodated along either of two grid planes of a SSG

and we assume a Cartesian (x, y, z) reference system

to describe them. In one implementation, the FS coin-

cides with the plane placing (xx, yy, zz) normal stresses

and both tangential components of the displacement

(or velocity) vector. The second implementation de-

fines the FS as the grid plane that holds the trans-

verse component of the displacement (or velocity) vec-

tor and both (xz, yz) shear stresses. Kristek et al. [19]

referred to the former alternative as the H-formulation,
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while W-formulation was the name given to the latter.

Graves [16] compares the H-formulation of the image

method to the vacuum strategy in the same test re-

ferred above (under a grid resolution of 9.2 points per

λSMIN ) and observes a more precise modeling of surface

wave amplitudes by the former. Bohlen and Saenger [3]

also present 2-D comparisons of both competing FS for-

mulations, and conclude that stress imaging on SSG

requires half the grid sampling of the vacuum method

to obtain similar precision on Rayleigh propagation on

PSG (9 nodes versus 17 nodes, per λRMIN , respectively).

Alternatively, Kristek et al. [19] focused on assessing

both H- and W- formulation of the image method on

3-D SSG and used a near-surface Gabor wavelet to

excite strong surface waves on a homogeneous halfs-

pace; separate tests were performed for Poisson ratio

values of 0.25, and 0.45. In these experiments, they

found that both formulations require a minimum of 10

nodes per λSMIN to achieve low dispersive propagation

of Rayleigh waves in the range of epicentral distances

up to 22.5λSMIN , and these results are practically inde-

pendent of the Poisson ratio. Further applications and

assessments of the stress imaging formulation on pla-

nar FS can be found in Robertson [30]; Pitarka [29];

Gottschammer and Olsen [15]; and Olsen et al. [28].

This approach also offers the flexibility to accommodate

realistic Earth’s topography and extensions to non pla-

nar FS have been proposed by Jih et al. [17], Tessmer

and Kosloff [18], and Zhang and Chen [6].

For planar FS, Kristek et al. [19] propose the H-

and W- formulations of the Adjusted FD Approxima-

tions (AFDA) on 3-D SSG, both carefully designed to

compute particle velocities and stress components with

fourth-order accuracy at the FS and grid planes nearby.

In these formulations, no fictitious grid planes are de-

fined outside the FS because spatial discretization of

Hooke’s laws and equations of motions uses unilateral

stencils on the FS normal direction combined to cen-

tral stencils on the tangential direction to this bound-

ary. This stencil combination makes these formulations

more efficient than the image method, as experimen-

tally shown by Kristek et al. [19] (same experiment de-

tailed above). There, AFDA methods only required 6

grid points per λSMIN to model Rayleigh wave propa-

gation with similar accuracy of the imaging technique.

Therefore, grid sampling needs of AFDA formulations

are comparable to the grid resolution demands of fourth-

order SG methods for precise propagation of body waves

at interior nodes (Moczo et al., [26][25]).

This paper presents two contributions to the mod-

eling of surface waves along a planar FS. The first one,

is an elastodynamics FD solver on a 2-D PSG that re-

places the vacuum method by an explicit discretization

of zero traction conditions on a new set of single grid

nodes (holding all displacement and stress components)

that we call Compounds. In our PSG, the FS grid plane

is comprised of only Compound nodes. At each of these

nodes, second-order unilateral FD boundary conditions

(zero zz and xz stresses) along the rotated axes allow

computing both FS displacements, once interior dis-

placements are time stepped at grid lines nearby. At

interior grid points, spatial discretization of all wave-

fields is fourth-order accurate. This new FS formulation

avoids fictitious grid points, and instead explicitly dis-

cretizes the null traction conditions by unilateral FD in

a manner similar to that used by AFDA on SSG. How-

ever, our discretization uses the mimetic or conserva-

tive FD operators proposed by Castillo and Grone [4]

that combine one-sided and central stencils on a 1-D

SG, with separate order of accuracy (between second-

and fourth- order) at boundary and interior nodes. We

call this mimetic FD method MPSG. We additionally

test a fourth-order accurate version of our MPSG FS

formulation, but unfortunately boundary computations

degenerate in numerical instabilities. The second con-

tribution of this paper is a simple procedure to isolate

the Rayleigh pulse from a surface-wave time series ex-

cited on a homogeneous halfspace, and computation of

the corresponding phase speed via fast Fourier trans-

form (fft). Then, the Dispersion Curve of the Rayleigh

(DCR) wave can be obtained from the phase differ-

ences at two surface receivers along waves’ path. Based

on this procedure, we compare DCR from the vacuum

and MPSG methods when solving the classical Lamb’s

problem and quantify accuracy of both in terms of grid

sampling of reference λS .

2 Problem Formulation

In this section, we present the mathematical formula-

tion of the 2-D wave propagation problem used in our

numerical studies. We consider a linearly elastic and

isotropic half plane with a horizontal axis x (−∞ < x <

∞) and a vertical axis z positive downward (−∞ < z ≤
0). We take the plane z = 0 as the interface with a vac-

uum layer that we refer as free surface (FS). Particle

motion is described by the elastodynamic wave equa-

tion,

ρü = τxx′x + τxz′z (1)

ρẅ = τzz′z + τxz′x (2)

and the constitutive stress-strain relationships (Hooke’s

law),

τxx = (λ+ 2µ)u′x + λw′z (3)
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τzz = (λ+ 2µ)w′z + λu′x (4)

τxz = µ(u′z + w′x) (5)

Here, we adopt the notation ü = ∂2u
∂t2 , u′x = ∂u

∂x ,

τxx′x = ∂τxx

∂x and so on, where t represents physical

time. Dependent variables are the components of the

displacement vector u= (u,w), and the symmetric stress

tensor with diagonal components τxx, and τzz, and off-

diagonal component τxz. In this model, medium param-

eters are the density ρ and Lame constants λ and µ.

Solution of eqns. (1) to (5) requires appropriate initial

and boundary conditions. In this work, we assume qui-

escence prior to wave excitation at t = 0, thus u=u̇=0

everywhere for t 6 0, and traction must be null at the

FS for t > 0, i.e.,

τzz = τxz = 0, at z = 0 (6)

Material particles move in response to three types

of waves coexisting in our simplified model. The scalar

compressional (P) wave and the vertical component of

the shear (SV) wave, with speeds denoted as VP and

VS , respectively, that correspond to VP =
√

λ+2µ
ρ and

VS =
√

µ
ρ . The interaction of both body waves P and

SV with the FS excites Rayleigh pulses that propagate

at speed VR dependent on VP and VS . A Rayleigh wave

is a known example of surface waves because their am-

plitudes decay rapidly with depth. Love surface waves

and body SH waves also present in more general tridi-

mensional applications are absent in our simplified 2-D

model, but the new numerical method described in next

sections are naturally extensible to 3-D rectangular do-

mains.

3 Vacuum formulism on a Partly-Staggered

Grid: VPSG scheme

We first implement the zero traction boundary condi-

tions on a planar FS of a 2-D elastic medium using

the Vacuum method and a PSG with the purpose of

obtaining reference solutions for comparative accuracy

studies against our new method. Here, we name this

implementation as VPSG and follow Gelis et al. [14]

and Cruz-Atienza [7] for algorithmic details. Figure 1

depicts a typical PSG composed by only two types of

nodes, displacement and stress gridpoints, each of them

locating all components of the respective physical quan-

tity. As shown, density and Lame parameters are sep-

arately placed at every displacement node and stress

node, respectively. The dotted line represents the FS

boundary defined along the first line of stress nodes at

which null Lame values are imposed. This leads to ze-

roing traction components τzz and τxz, as well as the

stress τxx which is not physically constrained by the pla-

nar FS boundary condition. Displacements u and w are

also zeroed at the gridline above the FS in correspon-

dence with the nullity of the Lame parameters in the

Vacuum layer. In the computation, FS displacements

correspond to those computed at nodes half-way below

the zero-stress gridline. We would like to point out that

an alternative Vacuum implementation is given by set-

ting the FS boundary on a displacement (or velocity)

grid line above which zero stresses implicitly enforce

traction nullity (see, for instance [3]). However, in this

work we only consider the former VPSG implementa-

tion detailed above in our numerical studies.

Fig. 1: Partly-Staggered Grid with a FS boundary con-

dition implemented by vacuum formulation. Squares

represent displacement nodes where density is also de-

fined, and circles correspond to stress nodes where

Lame parameters are assumed available. Dashed lines

denote the FS boundary above which zero-displacement

grid nodes are also defined

To further detail our VPSG implementation in a

Cartesian grid with steps ∆x and ∆z, we introduce a

set of coordinate axes (x̌,ž) by rotating the original axes

(x,z) by tan−1 ∆z
∆x degrees. This implies that new ro-

tated axes are aligned with the diagonals of grid cells,

and spatial differentiation can proceed along x̌ and ž

directions employing finite difference (FD) staggered

stencils with the cell diagonal ∆r as the spatial step.

Saenger et al. [36] expresses the relationships between

grid steps and partial derivates on both coordinate sys-

tems as follow

ž =
∆x

∆r
x+

∆z

∆r
z; x̌ =

∆x

∆r
x−∆z

∆r
z;∆r2 = ∆x2+∆z2(7)

∂

∂z
=

∆r

2∆z

(
∂

∂ž
− ∂

∂x̌

)
;
∂

∂x
=

∆r

2∆x

(
∂

∂ž
+

∂

∂x̌

)
(8)

Numerical differentiation on VPSG, as well as on

previous PSG elastic or viscoelastic solvers, is carried
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out along cell diagonals to approximate derivatives with

respect to rotated coordinates (x̌,ž). Then, these ap-

proximations are transformed into the original coordi-

nates (x,z) by equation (8) to solve the equations of

motion (1) to (5), which always remain in the Cartesian

system. Second-order and fourth-order FD stencils cor-

respond to the standard SG differentiators∆r−1(−1, 1),

and (24∆r)−1(1,−27, 27,−1), respectively (see for in-

stance, Levander [21]). To compute FS displacements

along the gridline buried by ∆z
2 , second-order SG sten-

cils are used for stress differentiation in (1) and (2),

followed by the standard nodal-centered discretization

of time derivates by means of the stencil ∆t−2(1,−2, 1).

At this grid level, we verify that using instead fourth-

order unilateral SG differentiators for stress fields (as

those given by first row on matrix D4−4 in Appendix A)

trigger numerical instabilities. However, both second-

and fourth- order centered SG stencils describe above

can be applied for displacement differentiation along

the first interior stress line and simulation remains sta-

ble. Thus, we choose the fourth- order SG stencil for

our VPSG implementation, and same stencil in then

used to differentiate any wavefield at grid lines below.

Also, time differentiation of acceleration terms in (1)

and (2) is performed anywhere by the nodal stencil re-

ferred above.

Numerical stability and grid dispersion of PSG FD

methods was recently reviewed by Saenger et al. [36]

in the case of an unbounded homogeneous and elastic

medium. For a second-order accurate scheme in time,

Fig. 2: Adapted Partly-Staggered Grid for mimetic dis-

cretization. Interior grid distribution of wavefield com-

ponents and material properties is identical to figure 1.

The FS boundary (dashed line) is discretized by the

Compound nodes (filled squeares) that locate all dis-

placement and stress tensor components. The rotated

axes have been included to illustrate the differentiation

directions at Compound nodes

they found the following Von-Neumann stability bound

for the time step ∆t

∆t Vp
∆h

6
1

Σn
K=1|CK |

, (9)

where scalars CK are the coefficients of the (2n)th-order

accurate central stencil for SG differentiation in space

(n > 1), and ∆h represents the common grid step on

both directions (x,y) on a square PSG (i.e., ∆h = ∆x =

∆z). Interestingly, above stability constraint (9) results

the same for 2-D and 3-D PSG. Although, this Von-

Neumann bound omits the existence of a FS boundary

and surface waves in our P-SV model, we here use it to

limit the time step ∆t in our VPSG simulations.

4 Mimetic operators on a Partly-Staggered

Grid: MPSG scheme

The formulation of our numerical scheme begins by rep-

resenting a planar FS on a PSG by a new grid line of

single nodes that place all displacement and stress com-

ponents (filled squares in figure 2). We have called these

special boundary gridpoints Compound nodes. Reader

might picture this single Compound gridline in figure 2

as the merging of both (fictitious displacement and FS

stress) gridlines that comprise the Vacuum layer in fig-

ure 1.

Notice that along any rotated (x̌,ž) coordinate line

of this new PSG, the grid reduces to a 1-D SG with

three different types of nodes: displacement, stress, and

Compound gridpoints; where the latter is placed at

the boundary. This wavefield grid distribution facili-

tates the application of unilateral SG FD stencils (along

rotated axes) at compound nodes and neighbor grid-

points, leading to an explicit discretization of FS con-

ditions at the Compound nodes. To do so, we adopt

the FD mimetic operators proposed by Castillo and

Grone in [4] on a 1-D SG that corresponds to any

gridline along either x̌ or axis ž. Castillo-Grone op-

erators offer adjustable order of accuracy with either

second- or fourth-order differentiation at boundaries,

combined with fourth-order accurate stencils at inte-

rior nodes. These operators are given in Appendix A,

where sub-indexes “2-4” and “4-4” denote the nominal

accuracy at boundary and interior points, respectively.

Mimetic operator G comprises SG stencils to suitably

perform displacement differentiation along any of the

rotated axes, while mimetic operator D can be used for

stress staggered differentiation in either rotated direc-

tion. Castillo-Grone operators were successfully applied

on 2-D SSG by Rojas and collaborators for modeling P-

SV motion [32] and dynamic ruptures [33] [34].
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We next detail the second-order MPSG discretiza-

tion of zero traction conditions at FS Compound nodes

using mimetic G2−4. In figure 2, gridlines are indexed

in both directions x and z by either integer or half-

integer numbers to emphasize the staggered nature of

this mesh. The application of unilateral stencil (g11, g12,

g13) (first row of G2−4) along both rotated directions x̌

and ž to the displacement u at FS node (i, 0), followed

by the transformation back to original (x,z) axes, yield

the following approximations to first derivates

[u′z]i,0 =
∆r

2∆z
{2g11ui,0 + g12{ui+ 1

2 ,
1
2

+ ui− 1
2 ,

1
2
}

+ g13{ui+ 3
2 ,

3
2

+ ui− 3
2 ,

3
2
}} (10)

[u′x]i,0 =
∆r

2∆x
{g12{ui+ 1

2 ,
1
2

+ ui− 1
2 ,

1
2
}

+ g13{ui+ 3
2 ,

3
2

+ ui− 3
2 ,

3
2
}} (11)

Substitution of approximations (10) and (11), and

ones equivalents for displacement w, into the zero trac-

tion conditions τxz = τzz = 0, leads to a linear depen-

dence of FS solutions ui,0 and wi,0 on interior displace-

ments, i.e.,

ui,0 = − 1

2g11
{g12{ui+ 1

2 ,
1
2

+ ui− 1
2 ,

1
2
}

+ g13{ui+ 3
2 ,

3
2 2

+ ui− 3
2 ,

3
2
}+

2∆z

∆r
[w′x]i,0} (12)

wi,0 = − 1

2g11
{g12{wi+ 1

2 ,
1
2

+ wi− 1
2 ,

1
2
}

+ g13{wi+ 3
2 ,

3
2

+ wi− 3
2 ,

3
2
}+

2∆z

∆r
γ[u′x]i,0} (13)

where γ = λ
λ+2µ . Above equations (12) and (13) allow

the time evolution of FS displacements ui,0 and wi,0, if

those are preceded by the updating of interior displace-

ments based on the discretization in space and time

of momentum equations (1) and (2). The MPSG pseu-

docode (Algorithm 1) sketches a time iteration of this

scheme where displacements are assumed available at

time level t = n∆t.

An important theoretical concern on MSPG imple-

mentation is the impact of the half-way gridline of Com-

pound nodes on the numerical stability of this method,

and how it compares to a standard Vacuum-layer algo-

rithm such as VPSG. In our numerical tests (described

below), we set time step ∆t according to Von-Neumann

condition (9) (∆t ∼ 0.65∆hVP
) where CK are given by

the fourth-order SG stencil used at interior differen-

tiation, and observed stable calculations of all wave-

fields by both schemes during the whole simulation time

Algorithm 1 MPSG algorithm: Three-step time evo-

lution

STEP I (stresses at time t = n∆t): Compute τxx, τzz and
τxz at any interior stress nodes (j > 1) by using Hooke’s
law (3) to (5). Operator G2−4 is applied for displacement
differentiation along both directions and followed by the
transformation (8). FS stresses are given by boundary
condition (6) and the fact τxx = (λ− λγ + 2µ)u′x.
STEP II (Interior displacements at t = (n+ 1)∆t): Solve
(1) and (2) to obtain u and w at every interior displace-
ment node (j > 1

2
). Operator D2−4 is applied for stress

differentiation along x̌ and ž axes and then transforma-
tion (8) is used. Time discretization applies nodal stencil
∆t−2(1,−2, 1).
STEP III (FS displacements at t = (n+1)∆t): Use equa-
tions (12) and (13) and interior displacements from STEP
II to calculate u and w at every Compound node.

(∼ 10000∆t). However, we would like to stress that a

general theoretical stability study for MPSG is neces-

sary and viable given the linearity of the P-SV model.

A fully fourth-order accurate version (in space) of MPSG

is easily implemented by substituting operators G2−4
and D2−4 in favor of higher-order ones G4−4 and D4−4
(see Appendix A), respectively, in equations (12)-(13)

and MPSG pseudocode. However, in our numerical ex-

periments that use superficial point sources, we observe

exponentially growing instabilities in FS displacements

ui,0 and wi,0 right after surface waves pass by. This un-

fortunate behavior is slightly diminished by an exhaus-

tive reduction of ∆t far below the upper limit estab-

lished by condition (9). Thus, the only available stable

implementation of MPSG is the one using second-order

spatial differentiation at FS Compound nodes and one

gridline below. As a way to incorporate a fourth-order

P-SV solver into our dispersion and accuracy assess-

ment of VPSG and MPSG schemes (presented below),

we consider the Mimetic scheme formulated on a Stan-

dard Staggered Grid (MSSG method) that was pro-

posed by Rojas in [32]. MSSG corresponds to a fully

fourth-order (in space) and stable H-formulation of the

zero-traction FS conditions on a 2-D SSG that exploits

unilateral differentiation (in the FS normal direction)

to evade fictitious gridpoints. Roughly speaking, MSSG

might be considered as a simplified 2-D version of the H-

AFDA method developed by Kristek and co-workers [19]

for planar FS in 3-D elastic media. However, our MSSG

scheme differs from the latter method in two aspects: (i)

Mimetic formulas replace the traditional Taylor-based

stencils used in H-AFDA, and (ii) MSSG computes both

displacement components along the FS because of the

addition of Compound nodes to a 2-D SSG. H-AFDA

does not calculate the displacement component normal

to the FS exactly at this boundary, and requires of in-

terpolations to approximate this wavefield from inte-
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rior values. The MSSG scheme is briefly described in

Appendix B.

5 Error metrics on frequency and time

domains: Lamb’s problem

Lamb’s problem is a benchmark test used to assess the

efficacy of numerical implementations of free-surface

boundary conditions on elastic media (e.g., [38] [3] [23]

[13]). The response of a homogeneous half-plane due to

the application of a vertical point force f(t) at (xS , 0)

is analytically known [1], and exhibits strong and dis-

persionless Rayleigh waves. Thus, time series of exact

displacements (or particle velocities) and correspond-

ing spectral phase speeds can be used as a reference

to quantify numerical misfits in both domains, time

and frequency. In particular, numerical inaccuracies on

modeling the amplitude of Rayleigh waves are better re-

alized on seismograms recorded at free surface receivers

given the exponential decay of analytical Rayleigh pulses

with depth.

In this section, we describe a new procedure that

estimates the phase speed C(f) of Rayleigh pulses win-

dowed on numerical surface waves, and sketches disper-

sion curves C(f)
C0

using as a reference the constant speed

C0 of all frequency components of the exact Rayleigh

pulses. This procedure represents a computational im-

plementation of the two-station dispersion analysis ap-

plied to field records of surface waves and discussed

in many seismological textbooks (i.e., [20]). For a suf-

ficient time separation between earlier body-wave ar-

rivals and the trailing Rayleigh pulse, our procedure is
an easily-coded dispersion analysis tool with no sensi-

tivity to variation of the material Poisson ratio or time

shape of the impulsive source. Alternatively, to assess

numerical elastic solvers described in previous sections,

we also apply a time-dependent error metric to whole

waveforms by calculating root-mean-square (RMS) dif-

ferences of numerical solutions with respect to exact

seismograms at certain surface receivers. For instance,

let us denote the numerical waveform computed at a

receiver location R as uNUMR (tk), in the case of the hor-

izontal component of the displacement vector, for dis-

crete times tk = kδt, for k = 0, 1, 2, . . .. We use a similar

designation for the analytical displacement time series

at same location R, uANR (tk), after replacing the super-

indexed string “NUM” by “AN”. Relative RMS misfits

of the numerical waveform against its analytical coun-

terpart results,

RMS(uANR (t), uNUMR (t)) =

√√√√∑
k

[
uNUMR (tk)− uANR (tk)

]2∑
k

[
uANR (tk)

]2 (14)

Similarly, time-dependent errors on numerical ap-

proximations to the vertical displacement component

w at superficial receivers are measured by using the

same relative RMS metric (eqn. (14)).

Figure 3 illustrates the distribution of eight free-surface

receivers denoted by R0, R1, R2,. . ., R7, respectively,

displaced from the source point by epicentral distances

ranging from 4.8 km up to 30 km. In our tests de-

scribed below, the medium is a homogeneous half space

with fixed density ρ = 2500 kg
m3 and S-wave speed VS =

2000ms . However, we might vary the Poisson ratio σ and

therefore, P wave (VP ) and Rayleigh wave (C0) speeds

are adjusted accordingly. In addition, our tests include

variation of the time shape of the impulsive source f(t).

Fig. 3: Geometrical description of our Lamb’s test prob-

lem. The domain is a homogeneous halfplane and the

point source f(t) is applied at x = 0

5.1 Dispersion curves of numerical Rayleigh waves:

DCR algorithm

The first step of our dispersion analysis procedure is the

isolation of the Rayleigh pulse from P and S waves trav-

eling ahead along the FS. To illustrate this step, we cal-

culate the analytical time series of both displacements

at receiver R2, uANR2 (tk) and wANR2 (tk), in the case of a

Poisson solid σ = 0.25(VP =
√

3VS ,C0 ∼ 0.919402VS)

and a Gaussian source f(t) = exp(−α(t − t0)2) with

parameters α = 1000 and t0 = 0.25. Figure 4 depicts

these signals and their features resulting from the ar-

rivals of the P wave at time TP ;R2 ∼ 3.8 sec, S wave at

time TS;R2 ∼ 6.6 sec, and Rayleigh pulse TR;R2 ∼ 7.2

sec.

In particular, the inset in figure 4 shows uANR2 de-

caying to very low magnitudes during the time interval

(TS;R2, TR;R2) of approximately 0.58 sec, as a result of

the natural separation of the S and Rayleigh waves with

the increase of the propagation distance. Conversely,

waveform wANR2 does not present a similar separation

behavior at any of deployed receivers in our test. Thus,

we define a cut-off time TCUT ;R2 to truncate the time

series uANR2 (tk) and keep records for tk ≥ TCUT ;R2 that

only describe the Rayleigh pulse, and guarantees that

the energy content of uANR2 (tk ≥ TCUT ;R2) does not have

any interference from P or S waves. An obvious defini-

tion for TCUT ;R2 corresponds to the discrete time tk
at which uANR2 (tk) reaches its minimum magnitude in
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Fig. 4: Horizontal u (grey line) and vertical w (black line) analytical displacements at surface receiver R2. The

domain is a Poisson solid with a S wave speed of VS = 2000m/s. Arrival times of P, S, and Rayleigh waves at this

location are approximately 3.8 sec, 6.6 sec, and 7.2 sec, respectively

the interval (TS;R2, TR;R2), and we take the first occur-

rence of such minima in case of non-uniqueness. Our

definition of TCUT ;R2 for tk ∈ (TS;R2, TR;R2) is

TCUT ;R2 = min{tik : uANR2 (tik) = min |uANR2 (tk)|} (15)

Then, we take the truncated waveform uANR2 (tk ≥
TCUT ;R2) as the windowed Rayleigh pulse at receiver

R2 which represents the output of STEP I of our dis-

persion analysis. The need of keeping all signal records

uANR2 (tk) for tk ≥ TCUT ;R2 in windowed waveforms arises

from dispersion anomalies observed on numerical dis-

placement seismograms. Recall that the purpose of this

dispersion analysis is to serve as a metric for comparing

FS numerical implementations.

Figure 5 depicts VPSG and MPSG windowed Rayleigh

waves at location R2 and compares those with the ana-

lytical windowed pulse. In these numerical waveforms,

we observe the amplitude reduction of the pulse Rayleigh

and how the low grid-sampling of its high frequency

components delays these modes which end up trailing

the main pulse. This anomalous behavior is typical of

second- (and lower-) order discretizations of FS bound-

ary conditions. Thus, a complete analysis of Rayleigh

pulses on numerical waveforms must allow for simula-

tion time long enough that most of these oscillations

reach the recording receiver. Figure 5 also shows the

MSSG windowed Rayleigh pulse at receiver R2. Note

that it exhibits dispersion-driven oscillations both pre-

ceding and following the main pulse, illustrating that

numerical dispersion leads to higher and slower speeds

than the exact Rayleigh velocity. As a result, it is likely

that the discrete time TCUT ;R2 in eqn. (15) may not be

unique on fourth-order simulations of Rayleigh waves.

The second step of our dispersion analysis focuses

on computing the horizontal displacements u at receiver

R1, and then windowing the Rayleigh pulse on a time

series with equal length to that previously obtained R2.

This windowing process proceeds well if the time gap
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Fig. 5: Windowed Rayleigh pulses on all available (Analytical - thick grey signal -, VPSG, MSSG, and MPSG)

time series at surface receiver R2. As a reference, the full analytical waveform (thin grey curve) is also depicted

to show P- and S-wave features. Simulations for second-order MPSG and VPSG schemes use a grid size of h = 10

m, while fourth-order MSSG method employs h = 25 m

(TR;R1 - TS;R1) is approximately 0.5 sec (or higher). The

third and final step follows the usual two-station disper-

sion analysis of surface waves that estimates the disper-

sion curve C(f) from the phase difference of windowed

Rayleigh pulses at R2 and R1 once transformed to the

frequency domain via fft. We summarize this procedure

in the following sketch (Algorithm 2), making specific

references to analytical time series and receivers R1 and

R2, although this algorithm applies to any receiver pair

(with the exception of R0 where TR;R1 - TS;R1 ∼ 0.2

sec).

In STEP III, w represents the angular frequency,

∆x is the distance between stations R1 and R2, and

phase unwrapping allows getting a smooth dispersion

curve C(f). The unwrap routine provided by MATLAB

R2011 yields smooth phases in the frequency range of

source excitation in our tests. For instance, in our cur-

rent test 99% of the source energy lies below 25hz, and

Algorithm 2 DCR algorithm

STEP I: Obtain windowed Rayleigh pulse at R2,
uANR2 (tk ≥ TCUT ;R2) for TC;R2 given by eqn. (15). Com-
pute phase spectrum ϕR2(f) via fft.
STEP II: Obtain an equally long windowed Rayleigh
pulse at R1, uANR1 (TSIZE ≥ tk ≥ TCUT ;R1) for TC;R1 given
by eqn. (15) and TSIZE chosen such that length{windowed
pulse at R1} = length{windowed pulse at R2}. Compute
phase spectrum ϕR1(f) via fft.
STEP III: Calculate dispersion curve C(f) from the dif-
ference of unwrapped phases ϕunR2(f) and ϕunR1(f) [20]:

ϕunR2(f)− ϕunR1(f) = w∆x

[
TCUT ;R2 − TCUT ;R1

∆x
+

1

C(f)

]

MATLAB unwrapping yields smooth phases up to this

frequency.

Figure 6 presents normalized dispersion curves C(f)
C0

estimated by the DCR algorithm using as input all (an-

alytical, VPSG, MSSG, and MPSG) time series avail-
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able at receivers R1 and R2 in this test where σ = 0.25.

Consistency of this algorithm is empirically proven by

the fact that C(f) = C0, within round-off errors, in

the case of analytical displacements. In this figure, we

also observe phase speed distortions obtained by DCR

from all numerical schemes under comparison. Setting

5% as an acceptable dispersion error for Rayleigh wave

propagation, VPSG approximately requires 13.3 nodes

per λS( h
λS ∼ 0.075), whereas MPSG demands close to

6.6 nodes per λS( h
λS ∼ 0.15), i.e. the half of grid points

required by VPSG. On the other hand, if we reduce the

tolerance to 1% of dispersion error, MSSG achieves this

accuracy target using only 4 nodes per λS ( h
λS ∼ 0.25),

while MPSG requires grid densification by a factor of

two and a half, to 10 points per λS ( h
λS ∼ 0.1) (see

inset in fig. 6). Traditional FD SSG implementations

of planar FS based on either the mixed-order (a com-

bined use of fourth- and second-order accurate stencils)

image method or the fully fourth-order AFDA meth-

ods proposed by Kristek and co-workers, model surface

wave propagation with low dispersion errors under a

grid resolution of 10 or 6 grid points per minimum λS ,

respectively ([16][15][19]). Using such grid sampling cri-

teria as references, we approximate the dispersion er-

rors for each numerical method as shown in figure 6

and present them in table 1. Note that VPSG errors

are consistently four times higher than those deliver by

the MPSG scheme under same grid sampling, while the

MSSG method shows a remarkable accuracy yielding

negligible errors compared to those observed on MPSG

solutions.

Table 1: Approximate dispersion errors of numerical

schemes VPSG, MSSG, and MPSG, in the cases of grid

sampling ratio of 10 and 6 nodes per S wavelength λS

(taken from figure 6). Tests are performed on a Pois-

son solid (σ = 0.25) for the Gaussian point source

f(t) = exp(−1000(t− 0.25)2)

Scheme Dispersion error

10 nodes per λS 6 nodes per λS

VPSG 8% 20%

MSSG 0.125% 0.125%

MPSG 2% 5%

5.2 Sensitivity of the DCR Algorithm

In this section, we verify the consistency of the DCR al-

gorithm by reproducing the dispersionless propagation

of exact Rayleigh waves on a set of Lamb’s problems

carried out for different Poisson ratios σ, and a variety

of point sources. First, we consider σ of 0.20, 0.30, and

0.35, that combine with the test discussed above with

σ = 0.25, to cover the range of Poisson ratio observed

on most crustal rocks. Source excitation is kept fixed as

the Gaussian f(t) = exp(−1000(t − 0.25)2). The con-

stant speed C0 of all Rayleigh wave components is a

known function of VS and σ, and given by the unique

real root of the following cubic equation that satisfies

C0 < VS (i.e., [20]),

ε3 − 8ε2 +

(
24− 16

k

)
ε− 16

(
1− 1

k

)
= 0

where ε = (C0

VS
)2, and k = 2(σ−1)

2σ−1 .

Table 2 presents six-digit approximations to
√
ε for

the representative set of σ values under consideration.

Notice that the increase of σ implies the decrease of the

time gap between S and Rayleigh wave arrivals at the

surface location R1, (TR;R1 − TS;R1), and then reduces

the set of signal samples available to define the cut-off

time TCUT ;R1. However, in the case of σ = 0.35, we find

that a time gap (TR;R1 − TS;R1) of approximately 0.4

sec is long enough to pick appropriate cut-off times at

both receivers R1 and R2 in STEP I and STEP II of

the DCR algorithm, respectively.

Table 2: Proportionality between Rayleigh wave speed

(C0) and S-wave speed (VS) for different Poisson’s ra-

tios: C0 = VS
√
ε

σ
√
ε

0.20 0.910996

0.25 0.919402

0.30 0.927413

0.35 0.935013

Figure 7a shows the dispersion curves calculated by

the DCR algorithm using the analytical surface dis-

placements when three alternative values (to σ = 0.25)

are used for the Poisson ratio (σ = 0.20, 0.30, and 0.35).

This figure illustrates the consistency and applicability

of DCR to Lamb’s problems on materials with σ rang-

ing in [0.20, 0.35].

We also explore the sensitivity on the source time

shape of the Rayleigh-pulse windowing process that

highly depends on cutting-off times and equation (15)

(used in STEPS I and II of the DCR algorithm). The

consistency of the DCR algorithm also relies on this

isolation process. Thus, we consider three alternative

point sources to the Gaussian shape used above, and
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Fig. 6: Normalized dispersion curves of windowed Rayleigh waves on all available solutions (Analytical, VPSG,

MSSG, and MPSG) estimated by the DCR algorithm. DCR uses time series recorded at surface receivers R1 and

R2 and shown in figure 5

compute the analytical free-surface displacements in

the case of Poisson half space (σ = 0.25). From those

commonly used in numerical seismological applications,

we opt for the Gaussian derivative g(t) = −2α(t −
t0) exp(−α(t − t0)2) (α = 1000, t0 = 0.25), the Ga-

bor wavelet h(t) = exp(
−β2

G

δ2 ) cos(βG + θ) where βG =

2πfp(t − t0) (fp = 12.5 hz, δ = 5, θ = π
2 ), and the

Ricker function k(t) = (
√
π
2 )(βR− 0.5) exp(−βR) where

βR = (π (t−t0)
tp

)2 (tp = 0.125 s). The parameter values

for these three alternative source models have been cho-

sen to their energy spectrum to frequencies below about

25 hz, making them comparable in this respect to the

Gaussian source used previously. Figure 8 compares the

source spectra. Figure 7b reveals the low sensitivity of

the Rayleigh-pulse windowing process of DCR on the

particular time shape on the point source, and confirms

the natural separation of this pulse from body waves

traveling ahead on this benchmark Lamb’s problem.

5.3 Time-dependent error analysis and numerical

convergence

We next briefly examine accuracy and convergence prop-

erties of numerical solutions to the Lamb’s problem un-

der grid refinement, and use the RMS metric given in

eqn. (14) to quantify error. To do so, we again use the

numerical test with the Gaussian point source f(t) =

exp(−1000(t − 0.25)2). As a reference measure of the

maximum frequency of the source energy, we take the

99% percentile of its amplitude spectrum, which gives

fMAX ∼ 22 hz. Thus, the minimum S wavelength is

about λSmin ∼ 91 m (VS = 2000 m
s ), and we use this

distance as a reference length scale. Among the eight

free-surface receivers available in this test (see figure 3),

we compute RMS misfits at receivers R0 and R2, cor-

responding to propagation distances of approximately

53λSmin and 145λSmin, respectively. Waveform anomalies

caused by numerical dispersion, such as high-frequency
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(a) (b)

Fig. 7: Normalized dispersion curves estimated by the DCR algorithm for the analytical time series at surface

receivers R1 and R2. (a) The point source corresponds to the Gaussian model depicted in figure 8, and tests are

performed the four different Poisson ratios σ = 0.20, 0.25, 0.30, and 0.35. (b) The domain is a fixed Poissonan

homogeneous halfplane, and tests are performed for the four different point source models depicted in figure 8

Fig. 8: Percentage amplitude spectrum of four different point sources used to test the consistency of the DCR

algorithm under variation of the time shape of the Rayleigh pulse
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oscillations and time shifts of peak values, lead natu-

rally to a cumulative accuracy degradation with prop-

agation distance, and we here compare RMS misfits at

R0 and R2 as a way to assess this affect (also, its im-

plications on convergence rates can be assessed). For

each of the competing schemes (VPSG, MSSG, and

MPSG), we perform ten simulations on square grids

using the steps h = 10, 15, 22, 25, 30, 40, 50, 60, 80, and

100 m, and time steps given by ∆t = 0.5 h
VP

that sat-

isfies CFL stability constraints on both grids PSG and

SSG (see eqn. (9) and Appendix B). To give a better

physical interpretation of error behavior, we relate the

grid spacing h to the minimum wavelength λSmin and

define grid resolution as the number of gridpoints Nλ

fitted into this distance, i.e., Nλ =
λS
min

h . Thus, in our

simulations the grid-resolution parameter Nλ varies in

the range 0.9 ≤ Nλ ≤ 9. We refer to computational

meshes with Nλ < 3 as poorly-resolved grids given that

the number of gridpoints sampling wavelengths near to

λSmin is close to theoretical Nyquist limit (Nλ = 2). On

the other hand, we call well-resolved those grids where

Nλ ≥ 6 to be consistent with published fourth-order

AFDA simulations of surface waves on 3-D SSG where

satisfactory accuracy is achieved if
λS
min

h ≥ 6 [19].

We now compare accuracy achieved by VPSG, MSSG,

and MPSG in figures 9a and 9b, where grey symbols

represent misfits at farther receiver R2 and black sym-

bols correspond to misfits at closer receiver R0. We es-

timate the order of convergence of these solutions by

linear least-square fitting of RMS misfits on the log-

arithmic scale used on figures 9a and 9b, and fitted

slopes are given in table 3. In these figures, we also

plot a solid line that represents a perfect quadratic con-

vergence (scaling with h2), as a graphical reference for

the decrease of RMS misfits with h. On poorly-resolved

grids (Nλ ≤ 2.3), VPSG and MPSG misfits nearly ex-

ceed 100% for both displacements, and we attribute

this inaccurate behavior to the second-order (in case

of MPSG) and lower-order (in case of VPSG) treat-

ment of the FS boundary condition. As grid resolu-

tion improves, the sub-linear convergence of VPSG (see

table 3) inhibits any significant accuracy gain for the

range of grid spacing explored in these tests.

Our VPSG results are consistent with precision stud-

ies presented by Bohlen and Saenger in [3], where accu-

rate modeling of Rayleigh propagation is accomplished

for 30 grid points sampling λP (i.e., 17 grid points per

λS in a Poisson solid). Conversely, the faster conver-

gence (from super linear to just linear) of MPSG leads

to a more rapid decrease of RMS misfits that barely

exceed 10% on well-resolved grids (Nλ ≥ 9) and nearly

match the precision of MSSG (more evident in displace-

ment w).

Table 3: Approximate convergence rates under grid re-

finement of solutions computed by VPSG, MSSG, and

MPSG schemes to exact displacements u and w at sur-

face receivers R0 and R2

Convergence rates Convergence rates
Scheme of numerical of numerical

solutions to u solutions to w
at R0 at R2 at R0 at R2

VPSG 0.48 0.21 0.35 0.14
MSSG 0.98 0.92 1.78 1.45
MPSG 1.55 1.01 1.35 0.95

Figures 9a and 9b also indicate that MPSG errors

for both displacements may actually scale (with h) dif-

ferently according to the grid-resolution range. That is,

MPSG errors decay sub-linearly on low-resolved grids,

with a transition to quadratic convergence on better-

resolved grids (Nλ ≥ 3) with a better realization in the

case of the closer receiver R0 (consistent with MPSG

second-order nominal accuracy). Next, we focus on ac-

curacy and convergence properties of MSSG displace-

ment solutions computed at receivers R0 and R2 and

therefore valid for propagation distances up to approx-

imately 145λSmin. On coarse grids (Nλ ≤ 1.5), MSSG

misfits are higher than 30% for both displacement com-

ponents, but the superlinear convergence of this scheme

in the case of w renders higher accuracy on moderately

resolved grids (Nλ ≥ 3) where misfits are below 10%.

Similar accuracy target on displacement u is achieved

by MSSG only on very fine grids (Nλ ≥ 9) in response
to the slower linear convergence on this field. The fact

that MSSG scheme models displacement w more pre-

cisely than it does component u is consistent to the

H-formulation of FS boundary conditions on SSG pub-

lished by Gottschammer and Olsen [15] and Kristek et

al. [19]. These independent algorithms model phases of

the displacement (or velocity) component normal to the

free-surface more accurately than phases of both tan-

gential displacements (or velocities). On the other hand,

this accuracy discrepancy on solutions to both displace-

ment components is not observed in our results on PSG.

Misfits on u are comparable to misfits on w at the same

grid spacing h, when either VPSG or MPSG errors are

qualitatively compared across figures 9a and 9b. This

observation suggests that dispersion-driven anomalies

on u waveforms become more significant that those af-

fecting w waveforms on SSG, and further motivates the

application of the DCR dispersion analysis to the for-

mer displacement component in order to measure phase

speed distortions.
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(a) (b)

Fig. 9: Relative RMS misfits of VPSG, MSSG, and, MPSG solutions to analytical displacements u (chart a) and w

(chart b), at free-surface receivers R0 (black symbols) and R2 (grey symbols). Grid spacing h varies in the range

10m ≤ h ≤ 100m along the bottom axis, and the number of grid points sampling the S wavelength measures the

grid resolution in the top axis

6 Conclusion

In this paper, we describe a new mimetic finite dif-

ference (FD) implementation of a planar free surface

(FS) boundary condition on a 2-D elastic medium dis-

cretized by a partly staggered grid (PSG). This im-

plementation (MPSG) places a new set of Compound

nodes (displacement-stress nodes) along the FS grid-

line that allow the unilateral second-order discretiza-

tion of null-traction conditions and the computation

of all displacement and stress components. At interior

gridpoints, spatial discretization of all wavefields is cen-

trered and fourth-order accurate imitating PSG meth-

ods that employ the vacuum-layer implementation of

FS boundaries (VPSG methods). We next approximate

the dispersion curves of both schemes on a Lamb’s ex-

periment by computing the phase difference of isolated

Rayleigh pulses (from body wave arrivals) at two FS

receivers. On PSG that fits either 6 or 10 gridpoints

into a reference S wavelength λS , VPSG dispersion er-

rors are four times higher than those delivered by the

MPSG scheme. We additionally calculate root-mean-

square (RMS) misfits of MPSG and VPSG time series

relative to the analytical FS displacements for a variety

of grid spacing h (1 ≤ λS
MIN

h ≤ 9). For epicentral dis-

tances ranging from ∼ 50λSMIN to ∼ 130λSMIN , conver-

gence of the former method degrades from super-linear

to linear, and misfits barely exceed 10% in the case of

λS
MIN

h ≈ 9. In same tests, VPSG shows a much poorer

convergence and delivers misfits higher than 70%.

To compare MPSG performance with a fully fourth-

order accurate method on its spatial FD discretiza-

tion (including FS nodes), we use the MSSG scheme

that also employs mimetic stencils, but on a standard

staggered grid. In our experiments, the former deliv-

ers comparable dispersion errors to the latter on twice

denser grids. Along the explored range of epicentral dis-

tances, MSSG shows a slower RMS convergence in the

case of the horizontal FS displacement that leads to

a similar accuracy to MPSG on grids with
λS
MIN

h ≈ 9.

However, MSSG models both displacement components

more precisely on moderately resolved grids (
λS
MIN

h ≤
6).
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A Mimetic Finite Difference Operators

Castillo-Grone mimetic FD operators are designed to perform
numerical differentiation on a 1-D SG and discrete approx-
imations preserve an integration-by-part formula (including
boundary terms). This conservative property motivates the
acronyms mimetic. On the interval [0, a], let us consider evalu-
ations of two smooth functions f(z) and v(z) on the SG shown
by figure 10. For an equal-sized partition of N cells (by step
h = a

N
) this grid comprises nodes zj = jh, j = 0, 1, . . . , N and

cell centers zj+ 1
2

=
zj+zj+1

2
, j = 0, 1, . . . , N − 1. Evaluations

of f at cell centers and boundary points are collected in vec-
tor f, while evaluations of v at nodes are accommodated in
vector v, i.e.,

f = (f(z0), f(z 1
2
), . . . , f(zN− 1

2
), f(zN ))

v = (v(z0), v(z1), . . . , v(zN ))

Fig. 10: 1-D staggered grid for mimetic finite differen-

tiation of functions f and v using the difference opera-

tors G and D, respectively. Locations of vector eval-

uations f = (f(z0), f(z 1
2
), . . . , f(zN− 1

2
), f(zN )) and

v = (v(z0), v(z1), . . . , v(zN )) are shown, as well as sites

of approximations (Gf)j and (Dv)j+ 1
2

(j integer)

FD approximations to δf
δz

and δv
δz

, at grid locations also
illustrated in figure 10, are given by Gf and Dv, respectively,
where G and D are differentiation matrices corresponding to
the following choices according to the desired order of accu-
racy [5], [4]:

Mixed-order case:

G2−4 =
1

h


−8

3
3 −1

3
0 0 0 0 . . .

4
39
−31

26
44
39
− 1

26
0 0 0 . . .

0 1
24
−27

24
27
24
− 1

24
0 0 . . .

0 0 1
24
−27

24
27
24
− 1

24
0 . . .



D2−4 =
1

h


−1 1 0 0 0 0 0 . . .
1
23
−26

23
26
23
− 1

23
0 0 0 . . .

0 1
24
−27

24
27
24
− 1

24
0 0 . . .

0 0 1
24
−27

24
27
24
− 1

24
0 . . .


The order of accuracy of approximations G2−4f andD2−4v

reduces from fourth at interior grid points to second in the
vicinity of nodes z0 and zN .

Fourth-order case:

G4−4 =
1

h


47888
14245

1790
407

−14545
9768

8997
16280

− 2335
22792

25
9768

0 . . .
16
105

−31
24

29
24

− 3
40

1
168

0 0 . . .
0 1

24
−27

24
27
24

− 1
24

0 0 . . .
0 0 1

24
−27

24
27
24

− 1
24

0 . . .


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D4−4 =
1

h


4751
5192

909
1298

6091
15576

−1165
5192

129
2596

− 25
15576

0 . . .
1
24

−27
24

27
24

− 1
24

0 0 0 . . .
0 1

24
−27

24
27
24

− 1
24

0 0 . . .
0 0 1

24
−27

24
27
24

− 1
24

0 . . .


Approximations G4−4f andD4−4v are consistently fourth-

order at all gridpoints.

B Mimetic Operators on a Standard Staggered

Grid (MSSG scheme)

In this scheme, discretization of a 2-D elastic half-plane and
associated wavefields proceeds on the rectangular SSG shown
in figure 11. The grid has been enhanced by the inclusion of
Compound nodes (displacement-stress gridpoints shown as
filled symbols) along the FS to compute all wave fields at
this boundary. Fourth-order differentiation along both direc-
tions (x, z) is used to approximate spatial derivates of stress
components and displacement fields present in the equations
of motion (eqns. (1) to (5)) and the FS condition (eqn. (6)).
Thus, MSSG formulation relies on unilateral differentiation
along z axis at the FS (j = 0) and horizontal gridlines nearby
(j = 1

2
, 1), while centered stencils can be used for differentia-

tion along both directions in any other case. Operators G4−4

and D4−4 provide an appropriate combination of one-sided
and central FD SG stencils to implement this fourth-order
MSSG method. Notice that the mimetic central stencil oc-
cupying inner rows of G4−4 and D4−4 corresponds to the
standard fourth-order SG stencil that we here just referred
as central stencil [21].

Fig. 11: 2-D rectangular staggered grid with k =

1, 2, 3, . . . and i = 1
2 , 1,

3
2 , 2, . . .

In MSSG, time derivates in eqns. (1), and (2) are simply
approximated by the nodal centered second-order FD sten-
cil 1

∆t2
∗ (1,−2, 1), for ∆t the time step. In a square SSG, the

common grid step ∆h in both directions constrains the size of
∆t through the Von-Neumann stability condition presented
by Levander [21] for fourth-order FD schemes in 2-D infinite
media given by ∆tVP∆h

−1
√

2 6 (ΣnK=1|CK |)
−1. The follow-

ing pseudocode (Algorithm 3) sketches a MSSG time iteration
from discrete time t = n∆t to t = (n+1)∆t by assuming that
displacements u and w are available at the former time level.

MSSG calculations at interior gridlines j = 3
2
, 1, . . . , repli-

cates standard elastic solvers that use the fourth-order central
stencil for spatial differentiation (for instance, the velocity-
stress scheme of Levander [21]), in combination to second-
order time discretization of the equations of motion as re-
ferred in STEPS IV and V .

Algorithm 3 MSSG scheme

Computation of tensor stress components τxx, τzz
and τxz at time t = n ∗∆t
STEP I (for any integer i): Calculate u′x with the central
stencil in the cases of j = 0, 1. For j = 0, FS condition
τzz = 0 implies that w′z = −γ ∗ u′x where γ = λ

(λ+2∗µ) .

In the case of j = 1, compute w′z by using the unilat-
eral stencil (g21, g22, g23, g24, g25) (second row of G4−4).
Finally, obtain stresses τxx and τzz by means of Hooke’s
law along horizontal gridlines j = 0, 1 (note that τzz = 0
at j = 0).
STEP II (for any half-integer i): In the case of j = 1

2
,

compute w′x and u′z by using the central stencil and
unilateral stencil (d11, d12, d13, d14, d15, d16) (first row of
D4−4), respectively. Then, Hooke’s law yields τxz. For
j = 0, the FS boundary condition enforces τxz = 0.
Computation of horizontal displacement u at time
t = (n+ 1) ∗∆t
STEP III (for any half-integer i): Calculate τxx′x with
the central stencil along horizontal gridlines j = 0, 1.
For j = 0, compute τxz′z with the unilateral stencil
(g11, g12, g13, g14, g15, g16), (first row of D4−4), whereas
stencil (g21, g22, g23, g24, g25) allows obtaining this term
in the case of j = 1.
STEP IV (for any half-integer i): For j = 0, 1, calcu-
late the acceleration term Aij = rho−1 ∗ (τxx′x + τxz′z)
and update displacement u according to equation (1), i.e.,
un+1 = 2 ∗ un − un−1 +∆t2 ∗Aij .
Computation of vertical displacement w at time t =
(n+ 1) ∗∆t
STEP V (for any integer i): In the case of 1

2
, calculate

τxz′x by using the central stencil and compute τzz′z with
the unilateral stencil (d11, d12, d13, d14, d15, d16). Then,
evaluate the acceleration term Aij = ρ−1 ∗ (τxz′x + τzz′z)
and obtain displacement wn+1 in a similar way used in
STEP IV (w replace u).
STEP V I (for any integer i): For j = 0 compute u′x
at time t = (n + 1) ∗ ∆t using the central stencil ap-
plied to neighbor values un+1. The term w′z present in
the condition τzz = 0 and written as w′z = −γ ∗ u′x,
in STEP I, is discretized by means of unilateral stencil
(g11, g12, g13, g14, g15, g16) and value wn+1 results from
this identity. This calculation uses previously computed
w values at interior grid points at level time t = (n+1)∗∆t.




