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Abstract10

Earthquake source properties such as seismic moment and stress drop are routinely11

estimated from far-field body-wave amplitude spectra. Some quantitative but model-dependent12

relations have been established between seismic spectra and source parameters. However,13

large variability is seen in the parameter estimates, and it is uncertain how the variabil-14

ity is partitioned among real variability in the source parameters, observational error and15

modeling error due to complexity of earthquake behaviors. Earthquake models with dy-16

namic weakening have been found to exhibit two different modes of rupture: expanding17

crack and self-healing pulse modes. Four representative models are generated to model18

the transition from crack-like to pulse-like. Pulse-like rupture leads to development of a19

second corner frequency and the intermediate spectral slope is approximately 2 in most20

cases. The focal-sphere-averaged lower P and S wave corner frequencies are systemati-21

cally higher for pulse-like models than crack models of comparable rupture velocity. The22

slip-weighted stress drop ∆σE exceeds the moment-based stress drop ∆σM for pulse-like23

ruptures, with the ratio ranging from about 1.3 to 1.65, while they are equal for the crack-24

like case. The variations in rupture mode introduce variability of the order of a factor of25

two in standard (i.e., crack-model based) spectral estimates of stress drop. The transition26

from arresting- to growing-pulse rupture is accompanied by a large (factor of ∼1.6) in-27

crease in the radiation ratio. Thus, variations in rupture mode may account for the portion28

of the scatter in observational spectral estimates of source parameters.29

1 Introduction30

Estimates of earthquake source parameters such as seismic moment and rupture area31

are important to our understanding the physics of source processes and provide impor-32

tant input for the quantification of seismic hazards. These parameters are routinely mea-33

sured from far-field seismic spectra. Low-frequency spectral level, corner frequency and34

the high-frequency spectral decay slope are related to seismic moment, rupture area and35

high-frequency energy radiation, respectively. Static stress drop, the difference between the36

average shear stress on the rupture surface before and after faulting, provides insights into37

surrounding tectonic environments where earthquakes are generated [e.g. Kanamori and38

Anderson, 1975; Allmann and Shearer, 2007, 2009]. Observational studies for worldwide39

mb 5.5 earthquakes give stress drop estimates in the range of 0.3 to 50 MPa and, despite40

the large scatter, the mean value is at most weakly dependent on magnitude [Allmann and41

Shearer, 2009]. In engineering applications, stress drop is recognized as an important pa-42

rameter that scales high-frequency ground motion [e.g. Hanks and McGuire, 1981; Boore,43

1983]. Moreover, the apparent magnitude independence of stress drops provides poten-44

tial physical constraints on the magnitude dependence of empirically-based ground motion45

prediction equations (GMPEs) [Baltay and Hanks, 2014].46

Stress drop may be estimated from measurements of coseismic slip and rupture47

area [Eshelby, 1957]. For earthquakes without extensive surface rupture, those quanti-48

ties are not accessible to direct measurement, and (apart from relatively large events with49

extensive geodetic observations) they must be inferred from the spectral content of far-50

field P and S waves. The seismic moment and source dimension, estimated from low-51

frequency limit and corner frequency fc of seismic spectra, respectively, are then used to52

derive stress drop estimates. Variability in determinations of stress drop arises not only53

from uncertainties and biases in observational data selection and processing, but also54

from the source model assumptions used [e.g. Savage, 1966; Brune, 1970; Sato and Hi-55

rasawa, 1973; Molnar et al., 1973; Dahlen, 1974; Madariaga, 1976; Kaneko and Shearer,56

2014, 2015] and the methodology used in fitting the spectra to the model spectral shape57

[Shearer et al., 2006]. Moreover, there is no agreement among investigators on which58

types of theoretical models should be used for estimating the source dimensions, and what59

degree of model simplification is appropriate [Kaneko and Shearer, 2014].60
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The analytical solution for the elliptical uniform stress drop crack model in a homo-61

geneous Poissonian medium with major and minor axes A and B [Eshelby, 1957; Madariaga,62

1977a] gives a relationship between moment, area and stress drop,63

∆σ =
M0

c1SB
, (1)64

where M0 is the seismic moment, S is the source area and c1 is a geometric parameter.65

For slip along the major axis, c1 is defined as:66

c1 =
4

3E(m) + [E(m) − B2

A2 K(m)]/m2
, (2)67

where m =
√

1 − B2/A2 and K(m) and E(m) are complete elliptical integrals of the first68

and second kinds, respectively [Eshelby, 1957; Madariaga, 1977a]. In the special case of69

a circular source (R = A = B), the relationship (Eq-1) simplifies to70

∆σ =
7M0

16R3 , (3)71

where R is the rupture radius. Given a theoretical model of the source parameterized by72

the single length scale R, the source radius can be inferred from the focal-sphere average73

of corner frequency fc of the P or S wave through [Brune, 1970; Madariaga, 1976]74

fc = k
β

R
, (4)75

where β is the shear wave speed and k is a constant that is model dependent. Hence, esti-76

mates of stress drop can be computed as combinations of the expressions above:77

∆σ =
7
16
(

fc
kβ
)3M0. (5)78

Among these variables involved in stress drop determination under the assumption79

of a circular crack, only the value of k depends on which theoretical relationship is used80

to associate corner frequency with source radius. Both fc and k (but not their ratio) de-81

pend on wavetype, which we will indicate with superscripts. The model proposed by82

Brune [1970] presumes a simple circular fault and obtained kS = 0.37, a value which is83

frequently used for inferring source dimension and stress drop [e.g. Hanks and Thatcher,84

1972; Archuleta et al., 1982; Baltay et al., 2011]. An alternative is the source model of85

Sato and Hirasawa [1973], which includes nucleation, constant-velocity spreading and in-86

stantaneous stopping of circular rupture. This model is established by presuming the Es-87

helby [1957] static solution; given rupture velocity Vr = 0.9β, the model gives kP = 0.4288

and kS = 0.29. Although this model is consistent with a known static solution [Eshelby,89

1957] and explicitly incorporates propagation and stopping of the rupture front followed90

by slip cessation, and is favored by many investigators [e.g. Prejean and Ellsworth, 2001;91

Stork and Ito, 2004; Imanishi and Ellsworth, 2013], a defect is that slip ceases at the same92

instant everywhere over the fault plane. Accordingly, some refinements have been pro-93

posed; for example, Molnar et al. [1973] make modifications such that slip at a point starts94

with the arrival of the rupture front and continues until information from the edges of the95

fault is radiated back to the point. Dahlen [1974] extended the analysis of rupture kine-96

matics to an elliptical crack that keeps on growing with the same shape.97

The model of Madariaga [1976] has been widely accepted and used [e.g. Abercrom-98

bie, 1995; Prieto et al., 2004; Shearer et al., 2006; Allmann and Shearer, 2007, 2009; ?].99

Madariaga [1976] simulated a dynamic singular crack model with constant rupture veloc-100

ity using a staggered-grid finite-difference method and found that kP = 0.32 for P wave101

and kS = 0.21 for S wave for Vr = 0.9β. Kaneko and Shearer [2014] constructed a dy-102

namic model of expanding rupture on a circular fault with cohesive zone that prevents a103
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stress singularity at the rupture front. Their solutions (obtained with a spectral element104

method) give kP = 0.38 and kS = 0.26 for the same rupture speed. Moreover, Kaneko and105

Shearer [2015] extended their analysis to symmetric and asymmetric circular and elliptical106

models with subshear and supershear ruptures.107

Previous studies using dynamic theoretical source models [e.g. Madariaga, 1976;108

Kaneko and Shearer, 2014, 2015] for quantifying relationship between seismic spectra109

and stress drop are all based on so-called crack-like rupture models, i.e., those in which110

the duration of slip at a point on the fault is comparable to the overall duration of rup-111

ture. They have also been limited to source models with constant rupture velocity and112

prescribed rupture termination edges. An alternative rupture mode, the so-called pulse-113

like rupture, has not been considered in the development of dynamic model-based spectral114

theories (though the purely kinematic model of Haskell [1964] is pulse-like). Pulse-like115

rupture, in which slip duration at a representative point (i.e., slip risetime) is short rela-116

tive to the rupture duration, may occur when dynamic weakening occurs during the most117

rapid sliding phase and is followed by restrengthening. Pulse-like rupture can also result118

from the presence of secondary length scales (e.g., in the fault geometry, frictional pa-119

rameter distribution, or stress field) shorter than the overall rupture dimension. Short slip120

risetimes inferred from kinematic source inversions were first interpreted as evidence of121

a local healing mechanism by Heaton [1990]. This mechanism has also been introduced122

to explain the complexity of seismicity patterns [Cochard and Madariaga, 1996] and the123

lack of heat flow anomaly on the San Andreas Fault [Noda et al., 2009]. Theoretical self-124

similar solution for pulse-like rupture has been derived by [Nielsen and Madariaga, 2003].125

Both crack- and pulse-like modes have been observed in laboratory experiments and nu-126

merical simulations [e.g. Lu et al., 2010; Zheng and Rice, 1998]. The mechanisms behind127

the pulse-like rupture modes that have been proposed include: the velocity dependent fric-128

tion [Heaton, 1990; Beeler and Tullis, 1996; Zheng and Rice, 1998; Gabriel et al., 2012],129

coupling between slip and dynamic normal stress changes along bimaterial faults [Andrews130

and Ben-Zion, 1997; Ampuero and Ben-Zion, 2008; Dalguer and Day, 2009], the spatial131

heterogeneity of fault strength and initial shear stress [Beroza and Mikumo, 1996; Day132

et al., 1998; Oglesby and Day, 2002], the finite downdip width of the seismogenic zone133

[Day, 1982; Johnson, 1992] or the reflected waves within the fault zone [Huang and Am-134

puero, 2011].135

Here we simulate 4 simplified models of rupture propagating and (in one case) stop-136

ping spontaneously in expanding crack and self-healing pulse-like modes. The sponta-137

neous rupture model, described in Section 2, incorporates strong velocity weakening in a138

regularized rate- and state-dependent friction framework [Noda et al., 2009; Rojas et al.,139

2009]. Section 3 gives a qualitative description of the simulation results. Computation of140

far-field radiated spectra is described in Section 4, and spectral parameters are discussed141

in Sections 5 and 6. Section 7 discusses retrieval of energy and stress drop estimates.142

2 Crack-like and pulse-like modes generation with forced or spontaneous termina-143

tion144

Among multiple mechanisms already mentioned for the generation of self-healing145

rupture, here we focus on velocity dependent friction. The rate and state framework on146

which we base the friction law we use in this paper has its basis in laboratory experiments147

[e.g. Dieterich, 1979; Ruina, 1983; Marone, 1998]. We use the regularized formulation148

of the friction coefficient f as proposed by Lapusta et al. [2000] (see also Shi and Day149

[2013], Appendix B),150

f (V, ψ) = asinh−1[
V

2V0
exp(

ψ

a
)], (6)151

where the state variable ψ evolves according to a slip law152

Ûψ = −
V
L
[ψ − ψss(V)], (7)153
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ψss(V) = aln{
2V0
V

sinh[
fss(V)

a
]}, (8)154

where V is slip velocity and fss(V) is the steady-state friction coefficient at slip velocity155

V . In this study, the steady-state friction coefficient takes the form (following Dunham156

et al. [2011] and Shi and Day [2013], which is a smoothed version of the form used by157

Noda et al. [2009] and Rojas et al. [2009])158

fss(V) = fw +
flv − fw

[1 + (V/Vw)
8]1/8

, (9)159

which has a strongly velocity-weakening feature such that when V � Vw , fss approaches160

a fully weakened friction coefficient fw . Vw is called weakening slip velocity. When V <<161

Vw , fss approaches a low-velocity steady-state friction coefficient flv , i.e.,162

flv(V) = f0 − (b − a)ln(V/V0). (10)163

In the foregoing equations, the constants a and b are the direct-effect and state-evolution164

parameters, respectively, and f0 and V0 are the reference values for the friction coefficient165

and slip rate, respectively.166

One commonly-applied way to generate a transition from crack-like to pulse-like167

rupture mode is to alter the background shear stress level [e.g. Cochard and Madariaga,168

1996; Perrin et al., 1995; Beeler and Tullis, 1996; Zheng and Rice, 1998; Noda et al., 2009;169

Dunham et al., 2011; Gabriel et al., 2012]. Figure 1, based on the analysis of Zheng and170

Rice [1998] shows this schematically. The transition from pulse-like to crack-like rupture171

mode is controlled by the relative values of the initial shear stress τb and a critical stress172

value τpulse, where the latter, as defined by Zheng and Rice [1998], is equal to the zero-173

velocity intercept of the radiation damping line (blue dashed line) tangent to the steady-174

state weakening curve (red solid curve). The rupture mode can be changed from pulse-like175

to crack-like by varying the initial shear stress from below to above a fixed τpulse. For176

convenience in comparing stress drop, we apply here an alternative scheme that maintains177

initial stress state and instead varies the weakening slip rate Vw . As Figure 1 shows, this178

variation can also generate a transition between crack-like and pulse-like modes as it shifts179

the steady-state velocity-weakening curve towards the right, thus shifting τpulse from be-180

low to above a fixed initial shear stress.181

We examine rupture of a planar surface embedded in an infinite homogeneous Pois-189

sonian medium (Figure 2), with velocity weakening friction (i.e., a < b) operating on the190

interior of a circle of radius R, with velocity strengthening (b < a) on the exterior (as a191

device to limit the rupture extent, with the ratio of (b − a)/a exceeding 10, an essentially192

unbreakable barrier). The material properties and initial stress state are given in Table193

1. For convenience of comparison among multiple simulation scenarios, the initial stress194

state is held fixed, as are the frictional parameters, apart from the weakening slip velocity195

Vw . Variations of the latter parameter are used to generate the transition from crack-like to196

pulse-like rupture. Rupture is initiated by imposing a shear stress perturbation ∆τ0(x1, x2)197

at the center of prescribed circular region (yellow circle in Figure 2), which elevates the198

initial shear stress to τb(x1, x2) + ∆τ
0(x1, x2). ∆τ0(x1, x2) has the following expression:199

∆τ0(x1, x2) = c exp(
l2

l2 − R2
n

)H(Rn − l)τb(x1, x2), (11)200

where c is coefficient representing over-stress amplitude, l is the distance between fault201

point (x1, x2) and hypocenter (xh1 , xh2 ), l =
√
(x1 − xh1 )

2 + (x2 − xh2 )
2, Rn is the nucleation202

region radius, H is the Heaviside step function and τb(x1, x2) is the uniform equilibrium203

initial shear stress on the fault. The chosen shape function in Eq-11 is smooth (infinitely204

differentiable and of compact support) in order to prevent singular behavior at the edge of205

the nucleation zone. The amplitude of the shear stress perturbation and the size of nucle-206

ation may affect the rupture mode, and we have chosen values that, in combination with207
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Figure 1. Schematic illustration indicating how the weakening slip rate Vw generates the rupture mode tran-
sition between crack-like and pulse-like. The red solid lines denote steady-state shear stress dependent on slip
rate. Blue and purple dashed lines are radiation damping lines corresponding to different Vw values. For the
small value of Vw , the corresponding critical τpulse is below initial background shear stress and a crack-like
rupture mode is obtained. With Vw increased such that τpulse is elevated above the initial shear stress, based
on the analysis in Zheng and Rice [1998], the rupture mode becomes pulse-like.

182

183

184

185

186

187

the chosen range of frictional parameters and background shear stress, permit rupture in208

either crack-like or pulse-like mode. We examine the slip rate and stress evolution along209

two perpendicular profiles through the hypocenter, an inplane profile (aligned with the ini-210

tial shear stress) and an antiplane profile (perpendicular to initial shear stress). In addition211

to admitting pulse-like ruptures, the study further differs from related numerical studies of212

seismic spectra [Madariaga, 1976; Kaneko and Shearer, 2014, 2015], in that it is based on213

a spontaneous rupture model rather than a fixed rupture-velocity model. Rupture velocity214

is determined as part of the problem solution, and may fluctuate in response to, e.g., local215

background stress state, fault geometry and frictional conditions.216

Accurate numerical results require adequate resolution of the cohesive zone, i.e., the222

portion of the fault surface (at a given instant of time) which is slipping at an appreciable223

rate but has not yet fully weakened. Based upon rough estimates [e.g. Shi and Day, 2013;224

Dunham et al., 2011] and detailed measurements [e.g. Rojas et al., 2009] of the size of co-225

hesive zone, we expect a cohesive zone dimension averaging 500m or so, and we formu-226

late the numerical simulations to ensure at least 20 nodes within the cohesive zone. Based227

on this level of resolution, the benchmark solutions in simulations done using slip weak-228

ening and rate- and state-based friction laws investigated by Day et al. [2005] and Rojas229

et al. [2009], respectively, all indicated relative rms errors for peak slip rate are much be-230

low 10 percent, with one to two orders of magnitude smaller error for their other metrics231

(e.g., mean static slip and rupture velocity).232

We solve 3-D problem of rupture in a viscoelastic medium using SORD (Support233

Operator Rupture Dynamics) [Ely et al., 2008, 2009]. This code uses a generalized fi-234

nite difference method with spatial and temporal second-order accuracy. The frictional235
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Table 1. Models Parameter Values188

Parameter Symbol Value

Bulk Properties
Compressive wave speed VP 6000 m/s
Density ρ 2670 kg/m3

Poisson’s ratio ν 0.25
Frictional Parameters

Direct effect parameter a 0.01
Evolution effect parameter b 0.014
Reference slip velocity V0 1 µm/s
Steady-state friction coefficient at V0 f0 0.7
State-evolution distance L 0.4 m
Weakening slip velocity Vw variable
Fully weakened friction coefficient fw 0.2

Initial Conditions
Normal stress on fault σ0 120 MPa
Background shear stress τb 38 MPa
Initial slip velocity Vini 2 × 10−9m/s
Prescribed rupture radius R 18 km

Nucleation Parameters
Nucleation radius Rn 3000 m
Overstress ∆τ0 1 × τb

equations 6 through 10 are solved using the staggered velocity-state method of Rojas et al.236

[2009]. The full methodology has been verified in tens of benchmark scenarios developed237

by the Southern California Earthquake Center [Harris et al., 2009] and this code has been238

used in numerous studies of spontaneous dynamic rupture simulation and strong ground239

motion [e.g. Ely et al., 2010; Ben-Zion et al., 2012; Shi and Day, 2013; Song et al., 2013;240

Baumann and Dalguer, 2014; Song, 2015; Vyas et al., 2016].241

3 Numerical simulation results242

In this section, we present simulation results representing a range of rupture modes243

from crack-like to pulse-like, as obtained by adjusting the weakening slip velocity Vw (let-244

ting it range from 0.05 m/s to 0.1 m/s). We examine four examples, including an expand-245

ing crack case and three pulse-like cases. The latter are denoted growing, steady-state,246

and arresting pulse models, following commonly-used terminology, [e.g. Noda et al., 2009;247

Gabriel et al., 2012]. These names reflect the spatial pattern of slip, as seen in Figure 3,248

which shows some details of the slip distributions for these cases. Figures 3a and 3b show249

the slip distribution at equal time intervals (1s), for profiles on the inplane (Mode II) and250

antiplane (Mode III) axes, respectively. For the expanding crack case, slip amplitude is251

strongly dependent on the distance to hypocenter, whereas all three pulse-like ruptures252

show more nearly uniform slip distributions. The mechanism for generating pulse-like rup-253

ture is that hypothesized by Heaton [1990], and can be seen from the shear stress spatial254

and temporal evolution near the crack tip in Figure 3c and 3d. In the expanding crack ex-255

ample, shear stress remains almost constant following full weakening, whereas, in pulse-256

like ruptures, the shear stress increases in response to slip-rate reduction behind the rup-257

ture front, eventually healing the rupture and creating a pulse-like slip rate function.258
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Figure 2. Circular fault model for generating the transition between crack-like and pulse-like ruptures. The
yellow circle in the center is the nucleation area with overstress. The blue circular patch is velocity weakening
region where a < b and rupture is allowable. Outer grey region requires a >> b, velocity strengthening, to
arrest rupture. X and Y axis correspond to inplane and antiplane direction along which the green triangular
symbols are receivers used to record slip rate function in Figure 3-7.

217

218

219

220

221

Further details of the crack-like rupture example are shown are Figure 4. The char-267

acteristic decrease of slip amplitude from the center toward the unbreakable barrier is ev-268

ident in Figure 4a. This shape is, however, not identical with the standard elliptical slip269

distribution (as a function of radial distance) for a purely static crack, because there is270

some degree of variability of the static stress change (Figure 4b) with slightly larger static271

stress drop along the anti-plane direction and at the edges, due to the barrier as well as the272

directional dependence of rupture velocity that is shown in Figure 4c. The slip rate func-273

tion, shown in Figure 4d and 4e, has the familiar long-tailed shape, terminated by stopping274

phases from the rupture edge, and shows the characteristic increase in peak slip rate with275

the distance away from the hypocenter.276

Details of the growing pulse example are shown in Figure 5. Due to the self-healing279

behavior, the slip distribution in this case (Figure 5a, with corresponding stress changes280

in Figure 5b) is more uniform than in the expanding crack model, but there are high-slip281

lobes along anti-plane direction, near the rupture edge. These two high slip lobes are the282

result of the differing rupture velocities along the two axes indicated in Figure 5c. Also283

seen in Figures 5a is a large slip patch associated with the artificial nucleation at the cen-284

ter of the fault. The principal difference relative to the expanding-crack model is in the285

shape of the slip rate function, shown in Figures 5d and 5e. The slip rate takes the form286

of a pulse with nearly constant rise time (weakly dependent upon distance). Stopping287

phases are no longer evident at the stations close to boundary. However, the slip rate func-288

tion in this case still retains the feature of the expanding crack model that peak slip rate289

increases from center to edge. This feature has a significant effect (to be discussed later)290

on far-field wave shapes for the growing pulse case.291
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Figure 3. Numerical simulation results of 4 rupture models: expanding crack (blue), growing pulse (green),
steady-state pulse (pink) and arresting pulse (orange). (a) and (b) show time dependent slip (1s interval) along
inplane and antiplane direction, and the characteristic slip profiles of the respective rupture modes are ob-
served. The dependence of slip on the distance from the hypocenter is minimal in pulse-like mode, but (apart
from the nucleation zone) has the expected elliptical shape in the crack-like case. (c) and (d) show shear stress
(black line) and slip rate (red line) for crack-like and pulse-like ruptures. In the pulse-like mode (d), shear
stress has a re-strengthening phase that heals the rupture and reduces the slip duration, in contrast to the flat
residual shear stress and longer slip duration in the crack-like rupture (c).

259

260

261

262

263

264

265

266

Most features of the steady-state pulse model are similar to those of the growing294

pulse, but slip is more uniformly distributed and smaller on average, while mean stress295

drop and rupture velocity are both decreased (Figure 6a, 6b and 6c). The slip rate func-296

tion is again pulse shaped, but with reduced rise time compared with the growing-pulse297

case, and now the peak slip rate is almost invariant with the distance to edges (Figure298

6d and 6e). The duration of the slip rate function is also almost invariant with distance,299

as in the growing pulse model. That is, the rupture front velocity is close to the healing300

front velocity (outside the nucleation zone), and this is consistent with simulated results of301

Gabriel et al. [2012].302

The arresting pulse case (Figure 7) corresponds to a weakening slip velocity that is305

close to the maximum value that permits a rupture to escape the nucleation area, and re-306

sults in a rupture model that stops spontaneously, i.e., before reaching the imposed velocity-307

strengthening barrier. In Figure 7d and 7e, peak slip rate decays to zero as hypocentral308

distance increases. This feature of spontaneous arrest distinguishes this case from the309

other three models. It is also a departure from previous rupture models used in the study310

of the far-field spectrum, all of which involve arrest by edge barriers, with the result that311

the high-frequency spectral character in those previous models is dominated by stopping312

phases.313
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Figure 4. Details of expanding crack, showing slip (a), static stress change (blue region means stress drop)
(b), rupture front time (c) and slip rate functions (d) and (e).

277

278

4 Computation of far-field radiations and spectra316

Our analysis of the simulations focuses on the far-field body-wave spectra from these317

sources, calculated for an elastic wholespace, following Madariaga [1976]; Kaneko and318

Shearer [2014, 2015]. We use the representation theorem of Aki and Richards [2002] to319

compute far-field P and S wave displacements at ®x as:320

ui(®x, t) =
γi

4πρα3r0
Cjkpqγpγqvknj

∬
∆ Ûu( ®ξ, t −

r
α
)dS321

+
δip − γiγp

4πρβ3r0
Cjkpqγqvknj

∬
∆ Ûu( ®ξ, t −

r
β
)dS322

(i, j, k, p, q = 1, 2, 3), (12)323

where ρ is the density, α and β are P and S wave speed, r0 is the distance from a refer-324

ence point on fault to the receiver, Cjkpq is the elastic modulus, γq is the unit vector di-325

rected from source point to the receiver point, vk is the unit vector normal to fault surface,326

nj is the direction of slip vector, ®ξ is a point on fault and r is the distance between ®ξ and327

®x (eq. 10.6 of [Aki and Richards, 2002]). Here, we use the fact that the fault surface is328

flat, neglect variations of the slip direction about its average, and employ the approxima-329

tion that the receiver distance is large compared with the source dimension (and r0 can be330

taken as the mean value of r , with the understanding that |r − r0 | � r).331

The far-field amplitude spectra are obtained by taking the amplitude of the Fourier332

transform of the far-field P and S displacements, respectively. As is customary in obser-333
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Figure 5. Details of growing pulse, showing slip (a), static stress change (b), rupture front time (c) and slip
rate functions (d) and (e).

292

293

vational studies, we introduce a specific spectral model and use least-square fitting to es-334

timate the model parameters. The Brune type spectral model (generalized for arbitrary335

high-frequency asymptotic slope) is used here,336

U( f ) =
Ω0

1 + ( f / fc)n
, (13)337

where Ω0 is the long period spectral level proportional to the seismic moment, fc is the338

corner frequency and n is the spectral fall-off rate. We estimate the spectral parameters339

Ω0, fc and n for the simulated far-field spectra by using a grid search to minimize their340

misfit to the Brune model spectrum in the frequency band of 0.05 fc < f < 20 fc . In341

calculating the misfit, a weight function is used to balance the contributions of differ-342

ent frequency components by roughly equalizing contributions from equal increments of343

log(f), a procedure with precedent in observational studies [Prieto et al., 2004; Shearer344

et al., 2006].345

5 Detailed analysis of properties of far-field displacements and spectra346

In this section, we present for each source model, the far-field displacements, the347

corresponding spectra, and the consequent spherical distribution of the corner frequencies348

and fall-off rates obtained from the spectral fitting. We begin by summarizing the varia-349

tion of the spectral corner frequency and fall-off rate over the focal sphere, interpreting350

them in terms of the rupture characteristics identified in Section 3. For that purpose, we351

select 8 receivers with different take-off angle (defined as the angle between the vector352
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Figure 6. Details of steady-state pulse, slip (a), static stress change (b), rupture front time (c) and slip rate
functions (d) and (e).

303

304

normal to the fault and the vector pointing to the receiver from the source), and fixed az-353

imuthal angle (22.5 degrees to the x axis). Their displacements and spectra, with stars354

representing computed corner frequencies, are plotted in Figure 8. The models represent-355

ing the four different rupture modes can be distinguished by the four colors (and this color356

convention for the four rupture modes is followed throughout the paper).357

In discussing the far-field displacements, it is common to refer to their time-domain360

form as "displacement pulses." These radiated pulses are not to be confused with the361

pulses of fault-surface slip velocity that characterizes the pulse-like rupture models. Simi-362

larly, we follow convention and use "rise time" in this section to refer to the time between363

the onset and peak of the far-field displacement, which is not to be confused with our364

(also conventional) use of the same term to refer to the duration of the slip pulses in the365

pulse-like rupture models.366

Several factors affecting the far-field displacement pulses and corresponding spec-367

tral shapes in Figure 8 should be noted. In these multilateral ruptures, the pulse rise times368

(duration between onset and peak value of displacement pulse) are shorter in directions at369

low angle to the fault plane (high take-off angle) than they are in directions nearly normal370

to the fault. The rise time is controlled by both the focusing due to directivity and increas-371

ing peak slip rate in the direction of rupture propagation [Brune et al., 1979]. The overall372

pulse width is longer at high take-off angle, which is a (well-known) rupture directivity373

effect. The pulse width is heavily influenced by stopping phases generated from the edges374

[Madariaga, 1976]. In the case where rupture velocity is constant and stopping occurs375
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Figure 7. Details of arresting pulse, showing slip (a), static stress change (b), rupture front time (c) and slip
rate functions (d) and (e).

314

315

on a circular boundary, delay times of the stopping phases from the nearest and farthest376

points on the edge of the fault would be377

t = R(
1

VR
∓

sin θ
c
), (14)378

where R means fault size, VR is rupture velocity, c is wave speed, θ is take-off angle, mi-379

nus sign denotes the nearest, and positive sign denotes the farthest, stopping phases. In380

Figure 8, the peak value of displacement is usually controlled by the nearest stopping381

phase and the approximate pulse width is controlled by the farthest stopping phase, but382

the pattern is complicated by rupture velocity changes and variations in the rupture mode383

and slip-velocity distribution. Nucleation phases are common to all models (i.e., the four384

curves overlap during first few tenths of a unit of dimensionless time), since they result385

from a common rupture-initiation procedure.386

As the take-off angle is increased, the rise time is shortened while the overall dura-388

tion is lengthened, as suggested by Eq-14. These two factors have opposing influences on389

high- to low-frequency spectral ratios, with the result that the trend of corner frequency390

with takeoff angle is non-monotonic, especially for the crack-like model, consistent with391

the studies of Madariaga [1976] and Kaneko and Shearer [2014]. Compared with the392

crack-like rupture mode, the pulse-like ruptures have P and S waveforms with sharper393

peaks, in the case of growing and steady-state pulse models, and smoother shapes, in the394

arresting pulse case (due to disappearance of the stopping phase). These effects generate395

more complex behavior of the seismic spectra, reflected in the variations in spherically-396

average values of corner frequency and fall-off rate among 4 models shown in Table 2.397
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Table 2. Spectral parameters of P and S waves among 4 models a
387

Expanding crack Growing pulse Steady-state pulse Arresting pulse

V2
r 0.88β 0.85β 0.78β 0.72β

V3
r 0.84β 0.81β 0.74β 0.66β

kP 0.35 0.40 0.31 0.28

kS 0.27 0.36 0.31 0.34

kP

kS 1.3 1.1 1.0 0.8

nP 2.2 2.0 1.8 1.7

nS 1.9 1.9 1.8 1.9

kP
stack

0.38 0.43 0.31 0.28

kS
stack

0.30 0.39 0.31 0.31

kP
stack

kS
stack

1.3 1.1 1.0 0.9

nP
stack

2.2 2.0 1.8 1.8

nS
stack

2.0 1.8 1.8 1.9

a V2
r and V3

r denote rupture velocity along inplane and antiplane direction. kP and kS are
normalized corner frequencies, fcβ/R, for the P and S wave, respectively. nP and nS are
(absolute values of) the spectral slopes for the P and S wave, respectively. Unsubscripted
quantities are obtained by averaging separate spectral estimates obtained from each re-
ceiver direction. Subscript "stack" indicates that the quantity is an estimate obtained
from an amplitude spectrum ("stack") formed by averaging the individual amplitude
spectra from all receiver directions.

The rupture velocities given in Table 2, V2
r and V3

r , are along the X (inplane motion) and398

Y (antiplane motion) coordinate axes, respectively. Each is computed by a linear integral399 ∫
Vrdl/L along the ruptured portion of the coordinate axis, excluding the nucleation zone.400

In this equation, Vr is the local rupture velocity, l is the distance variable, and L is the401

rupture length excluding the nucleation zone.402

In the remainder of this section, we elaborate on the features of far-field displace-403

ment pulses, their corresponding spectral amplitudes, and the spatial distributions (on the404

focal sphere) of the spectral parameters, for the four representative rupture models de-405

scribed in Section 3, illustrated in Figures 9-12.406

Figure 9 shows results for the expanding crack model. Figures 9a and 9b show the407

spherical distributions (calculated at 5 degree intervals) of normalized corner frequency408

(corner frequency divided by the ratio of source radius to S velocity) and spectral fall-409

off rate, while 9c shows the far-field body wave displacement pulses and 9d shows their410

spectra. We use the same notation as Madariaga [1976], Kaneko and Shearer [2014] and411
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Kaneko and Shearer [2015]. Near the fault surface (equator or low latitudes in Figure 9),412

the resultant corner frequencies are generally smaller than average, as a result of the wider413

displacement pulse width, as indicated in Figure 9c. The variation of pulse width is due414

to source directivity and duration, which reflects the differential traveling time between the415

near and far side of fault termination signals (Eq-14). In addition, spectral fall-off rates416

are generally larger at higher latitudes stations. There are, in addition, some complexities417

in the corner-frequency and fall-off rate distributions that arise from dynamic effects not418

present in previous, fixed rupture velocity models. For example, four lobes of high fall-off419

rate at high latitude (i.e., at take-off angle near fault normal), result from the dissimilar420

rupture behaviors along the in-plane and anti-plane directions typical in spontaneous rup-421

ture models (though corner frequencies do not show a corresponding strong azimuthal422

dependence). We obtain the following spherically averaged corner frequencies and fall-off423

rates for P and S waves,424

f Pc = kP β

R
= 0.35

β

R
425

f Sc = kS β

R
= 0.27

β

R
. (15)426

The k values are sometimes called normalized corner frequency and for the convenience427

of comparing results with previous studies and other scenarios here, we use normalized428

corner frequency, instead of original corner frequency. Rupture velocities average 0.88β429

along inplane and 0.84β along antiplane direction, respectively. Spherically averaged spec-430

tral fall-off rates for P and S waves, termed as nP and nS , are 2.2 and 1.9, respectively.431

The values of kP and kS found here are very close to results of symmetrical circular rup-432

ture with fixed rupture speed of 0.8β in Kaneko and Shearer [2014]. This is because for433

our spontaneously propagating expanding crack model, the far-field pulse width is mainly434

dominated by anti-plane rupture, which has the lower rupture velocity. Slight differences435

with Kaneko and Shearer [2014] in the distributions of corner frequencies and spectral436

fall-off rates is attributable to spontaneity of ruptures, effects of the rupture-initiation method437

and frequency band used in spectral fitting.438

Figure 10 shows the results for the growing pulse model. The variation of waveform444

pulse width with take-off angle seen in the expanding crack model is still apparent, while445

the azimuthal dependency is slightly reduced. Relative to the expanding crack case, the446

growing-pulse corner frequencies are higher and spectral decaying slopes are steeper (Fig-447

ure 10a and 10b), as can be inferred from the narrower far-field displacement pulse width448

(Figure 10c). The estimated rupture velocities of 0.85β along inplane and 0.81β along449

antiplane direction are not appreciably (less than 4%) different from the expanding crack450

case. The spherically averaged corner frequencies for the growing pulse case are451

f Pc = kP β

R
= 0.40

β

R
452

f Sc = kS β

R
= 0.36

β

R
, (16)453

and spherically averaged nP and nS are 2.0 and 1.9, respectively. The normalized P and454

S corner frequencies are increased by about 14% and 33%, respectively, relative to the455

expanding crack. This corner frequency shift and the reduced spectral fall-off rates result456

from the shorter slip duration in the growing pulse model. The P to S corner frequency457

ratio (∼1.1) is lower for the growing pulse rupture than for crack-like models (∼1.3 in our458

spontaneous crack model and ∼1.35 in the crack model of Kaneko and Shearer [2014]459

with similar rupture velocity).460

Figure 11 shows results for the steady-state pulse model. In this case, in addition to465

the effect of take-off angle, there are also slight azimuthal variations (Figure 11a). Nucle-466

ation phases (sharp onset of wave pulses) are larger relative to the overall pulse amplitude467
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than in the crack and growing-pulse models. Spectral decay slopes are lower compared468

with the growing crack and growing pulse models, and there is an accompanying down-469

ward shift in corner frequency. Somewhat smaller rupture velocities (0.78β along inplane470

and 0.74β along antiplane) also contribute to the reduction of corner frequencies. The471

spherically averaged corner frequencies for the steady-state pulse case are472

f Pc = kP β

R
= 0.31

β

R
473

f Sc = kS β

R
= 0.31

β

R
, (17)474

and spherically averaged fall-off rates for P and S waves are 1.8 and 1.8, respectively. The479

ratio between P and S wave corner frequencies is ∼1.0, a reduction relative to the previ-480

ously discussed cases, consistent with previous studies showing near-equality of P and S481

corner frequencies for complex sources (e.g., the asymmetrical circular model of Kaneko482

and Shearer [2015]).483

Figure 12 shows results for the arresting pulse model. This is the only case in which484

rupture growth stops spontaneously, without encountering the circular barrier. The absence485

of distinct stopping phases introduces some significant differences compared with the pre-486

vious models. The most prominent difference is the smoothing of the peak of the radiated487

waveforms (Figure 12c), which were sharply cusped in the other models. In addition, for488

the arresting-pulse case the initiation phase is relatively large compared to the overall am-489

plitude of the radiated waveform. The normalized corner frequency for P waves (Figure490

12a) has a pattern similar to that of the other cases, with somewhat lower values for re-491

ceivers at focal-sphere equatorial receivers (at high angle to the fault normal) relative to492

near-polar receivers (low angle to the fault normal). But for S waves, that pattern is re-493

versed, with corner frequencies lower near the fault normal. Moreover, the fall-off rates494

of S waves near the focal equator are much larger than those at other locations. Average495

rupture velocities for the arresting-pulse rupture (0.72β along inplane and 0.66β along an-496

tiplane) are somewhat lower than for the previous cases. The spherically averaged corner497

frequencies for the arresting pulse model are498

f Pc = kP β
√

AB
= 0.28

β
√

AB
499

f Sc = kS β
√

AB
= 0.34

β
√

AB
, (18)500

where A and B are major and minor axes of elliptical slip distribution in Figure 7a. The505

spherically averaged nP and nS are 1.7 and 1.9, respectively. The high-frequency asymp-506

totic slope reflects the lowest-order singularity present in a waveform, so it might seem507

paradoxical that the n values (especially nP) are reduced in this case, given that the wave-508

form cusps have been smoothed. The reason is that we (deliberately) calculate n values509

using a frequency band appropriate to observational studies (as explained in Section 4).510

In the presence of the complexities introduced by pulse-like rupture, the resulting n val-511

ues actually characterize an intermediate spectral slope, not the ultimate high-frequency512

asymptote. This issue is discussed in detail in the next section. The P corner frequency is513

slightly (∼10%) larger than for the corresponding fixed rupture-velocity crack-model esti-514

mate [Kaneko and Shearer, 2014], while the S corner frequency is ∼30% larger. In fact,515

the arresting-pulse model has a P to S corner frequency ratio of ∼0.82, the only one of516

our cases in which the ratio is less than one. This apparently anomalous behavior is partly517

a consequence of the high spectral fall-off rate for S at low latitudes of the focal sphere.518

The higher spectral slope at the low latitudes has the effect of shifting the corner fre-519

quency to higher frequencies, even though the high-frequency spectral energy is actually520

diminished in the arresting-pulse model relative to the other models. The P wave corner521

frequency, in contrast, decreases relative to the steady-pulse model, roughly by the amount522

expected due to the decreased rupture velocity (following Kaneko and Shearer [2014]).523
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These results are compared with those of previous studies [Brune, 1970; Sato and524

Hirasawa, 1973; Madariaga, 1976; Kaneko and Shearer, 2014], all of which were lim-525

ited to crack-like modes with fixed rupture velocity. As shown in Table 3, the spheri-526

cal average corner frequencies of pulse-like modes shows dependency on rupture veloc-527

ity, which is also observed in previous models [Sato and Hirasawa, 1973; Kaneko and528

Shearer, 2014], though rupture velocity has less impact on the S corner frequency than on529

the P corner. Both P and S wave corner frequencies are affected by rupture mode transi-530

tion from crack-like to pulse-like. Results in Table 2 also indicate that rupture mode only531

minimally affects the spectral fall-off rate estimates; apart from the arresting pulse case,532

these slope estimates are near 2, consistent with other studies [Brune, 1970; Madariaga,533

1976; Kaneko and Shearer, 2014]. The P wave spectral slope estimate for the arresting534

pulse case is lower, around 1.7. We emphasize that all spectral slope estimates were made535

using the procedure and bandwidth described in Section 4, which is intended to be consis-536

tent with observational practice. As shown in the next section, the estimates for the pulse-537

like models actually represent intermediate spectral trends, not asymptotic slopes.538

6 Properties of stacked spectra539

In the previous section, the average corner frequency estimate fc is an average of540

corner frequency of each spectrum weighted by spherical subarea (following the methodol-541

ogy of Madariaga [1976], Kaneko and Shearer [2014] and Kaneko and Shearer [2015]).542

On the other hand, observational studies [e.g. Prieto et al., 2004; Shearer et al., 2006]543

frequently use an alternative corner frequency estimate, fc , derived directly from spec-544

tral stacks. That approach may provide a more robust estimation, since it reduces effects545

of spectral distortion due to source and propagation complexities. To investigate the ef-546

fects of our rupture models on source parameter estimates, we recalculate the average547

corner frequencies of P and S waves by stacking the logarithms of all individual spec-548

tra of each wave type, evenly sampling the focal sphere. In Table 2, the values of kP
stack

,549

kS
stack

, nP
stack

and nS
stack

derived from stacked spectra are compared with those estimated550

by averaging individual spectral parameters in the previous section. The mean differences551

between the two averages (considering all four rupture models together) are 4%, 8%, 1%552

and 3% for kP , kS , nP and nS , respectively, confirming that observational estimates of553

source parameters are only minimally affected by performing the parameter estimation on554

the spectral stack.555

Stacked spectra for the four models are shown in Figure 13, along with Brune spec-556

tra fit to them by the method described in Section 4. The spectra in Figure 13 are only557

shown for frequencies well below the high-frequency resolution limit of the numerical558

simulations. In the expanding crack model, the Brune spectral function represents the559

stacked spectra of P and S waves with negligible misfit (Figures 13b and 13c, respec-560

tively). This is also consistent with previous studies [Madariaga, 1976; Kaneko and Shearer,561

2014, 2015]. The three pulse-like models, however, have systematic misfits at high fre-562

quency. The mismatch takes the form of a secondary corner frequency that becomes pro-563

gressively better developed as the rupture mode progresses from growing to arresting564

pulse behavior.565
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Figure 8. The radiated P and S displacement and spectra at 8 take-off angles from 4 dynamic rupture
models (denoted by 4 colors). Best fit corner frequency fc of each spectrum is indicated by a star.

358

359
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Figure 9. Far-field displacements, spectra, normalized corner frequencies ( fcR/β) and fall-off rates for ex-
panding crack model. (a) Distributions of P and S spectral corner frequencies ( fcR/β) over the focal sphere.
X and Y axes are identical with those in Figures 4-7. (b) Distributions of P and S spectral fall-off rate over the
focal sphere. (c) 4 sampled displacements and spectra of P and S waves. Black dashed lines are best fit Brune
model and star symbol denotes best fit corner frequency.

439

440

441

442

443

Figure 10. Far-field displacements, spectra, normalized corner frequencies and fall-off rates for growing
pulse model. (a) Distributions of P and S spectral corner frequencies over the focal sphere. (b) Distributions
of P and S spectral fall-off rate over the focal sphere. (c) 4 sampled displacements and spectra of P and S
waves. Black dashed lines are best fit Brune model and star symbol denotes best fit corner frequency.
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Figure 11. Far-field displacements, spectra, normalized corner frequencies and fall-off rates for steady-state
pulse model. (a) Distributions of P and S spectral corner frequencies over the focal sphere. (b) Distributions
of P and S spectral fall-off rate over the focal sphere. (c) 4 sampled displacements and spectra of P and S
waves. Black dashed lines are best fit Brune model and star symbol denotes best fit corner frequency.

475
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477

478

Figure 12. Far-field displacements, spectra, normalized corner frequencies and fall-off rates for arresting
pulse model. (a) Distributions of P and S spectral corner frequencies over the focal sphere. (b) Distributions
of P and S spectral fall-off rate over the focal sphere. (c) 4 sampled displacements and spectra of P and S
waves. Black dashed lines are best fit Brune model and star symbol denotes best fit corner frequency.
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Figure 13. Slip rate duration distribution and stacked spectra of P and S waves for each model. (a) The
distributions of slip rate durations for each model (we scale the curve of expanding crack with a factor of 3
to highlight the linearly decreasing distribution of slip duration). (b) Stacked P wave spectra (solid lines) and
best fitted Brune model (dashed lines). Dotted curves are frequency distribution of K/T , with K scaled such
that K/T is a rough indicator of the second corner frequency. (c) Stacked S wave spectra and best fit Brune
model.
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Double corner frequency spectra are common in both theoretical and empirical seis-572

mic studies. Kinematically, the lower and higher corner frequencies typically correspond573

to rupture duration (controlled by fault dimension) and slip rise time (duration of the slip-574

velocity pulse), respectively [e.g. Ben-Menahem, 1962; Haskell, 1964]. Physically, the ex-575

planation of the secondary corner in our pulse-like models is similar in spirit to the par-576

tial stress-drop model suggested by Brune [1970]. In Brune’s partial-stress-drop model577

(in contrast to the conventional Brune model), slip is hypothesized to be arrested early,578

such that static stress drop is less than dynamic stress drop, which is what occurs in our579

pulse-like spontaneous rupture models (and similar behavior is implicit in some barrier580

and asperity models [e.g. Boatwright , 1984; Uchide and Imanishi, 2016]). The develop-581

ment of slip pulses was previously related to the occurrence of a secondary spectral corner582

in the numerical modeling of Shaw [2003]. Numerous observational studies have proposed583

double corner frequency spectral models [e.g. Atkinson and Silva, 1997], and the issue584

deserves renewed attention in light of observational results such as those of Denolle and585

Shearer [2016] documenting a systematic emergence of a secondary spectral corner for586

the largest events in the global dataset and Archuleta and Ji [2016] documenting a break in587

scaling of LogPGA and LogPGV versus moment magnitude M around M ∼ 5.3.588

Anticipating that the second corner frequency can be related to slip rise time (by589

analogy with the Haskell fault model), we investigate the distributions (histograms) of slip590

duration for each model (Figure 13a). In Figure 13a, the ordinate gives the percentage of591

the total rupture area having slip-rate duration within the 0.5 second wide bin centered at592

the abscissa value. The expanding crack model has a very broad distribution of slip du-593

ration over the interval from 0.5s to 10s (the curve of the expanding crack is scaled by a594

factor of 3 to highlight this feature in Figure 13a), but all of the pulse-like ruptures have595

relatively narrow distributions of slip duration. This can be partially understood as a result596

of a diminished influence of the overall rupture geometry for pulse-like ruptures compared597

with crack-like modes; both total slip and slip velocity of these pulse-like ruptures are598

controlled principally by local shear stress and frictional properties rather than by global599

rupture features such as rupture edge diffractions. We assume that the second corner fre-600

quency scales inversely with the mean slip duration time:601

f 2nd
c =

K

T
, (19)602

where T is mean slip velocity duration and K is a constant to be determined. In Figure603

13b and 13c, solid and dashed lines are spectral stacks computed from the simulations and604

Brune’s model spectra, respectively. The presence of a second corner frequency shows up605

as a clear departure from the constant spectral slope of the Brune model. The dotted lines606

in Figures 13b and 13c are curves of K/T distribution derived from Figure 13a, for a fixed607

value of K for each wave type (around 1.8 and 1.5 for P and S wave respectively) that was608

determined, by trial and error adjustment, such that the distribution peak (from the dashed609

curves) coincides with the lowest frequency where the spectral stack departs visibly from610

the best fit Brune model. The proportionality between this frequency and T confirms, un-611

surprisingly, that, if a secondary corner frequency is interpreted in terms of pulse-like rup-612

ture, its value provides an estimate of mean slip duration. The upper spectral asymptote613

is not well determined in the simulations, however, so this estimate of K provides only a614

lower bound on the value of the second corner frequency (where the latter is defined as615

the frequency of intersection of the intermediate and upper spectral asymptotes), and thus616

may not be directly comparable with other K estimates (for example, a similar parameter617

in Savage [1972] equals 1 and in Denolle and Shearer [2016] equals 1/π).618

As the rupture model evolves from a growing- to an arresting-pulse mode, the spec-619

tral decay above the second corner becomes steeper, as seen in Figures 13b and 13c. This620

transition reflects the relative suppression of stopping phases, especially in the decay-621

ing pulse model, consistent with the expected dominance of stopping phases in the high-622

frequency limit [Madariaga, 1976, 1977b]. In the presence of the second corner and in-623
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creased rate of high-frequency decay, fitting over a broad frequency band to the conven-624

tional, single corner frequency Brune spectral function can bias the estimate of the first625

corner frequency, leading to uncertainties and bias in the stress drop estimate. For exam-626

ple, for shallow thrust earthquakes, Denolle and Shearer [2016] find that the conventional627

Brune model with a single-corner frequency is unable to fit spectra for high-magnitude628

events, and a double-corner frequency model improves the fitting and gives more consis-629

tent estimates of the first corner frequency in the sense that the subsequent stress drop es-630

timates are roughly invariant with seismic moment (given additional scaling assumptions,631

i.e., the length to width scaling of Leonard [2010]).632

7 Energy Partitioning and Stress Drop633

The partitioning of radiated energy between P and S waves is rupture-model depen-634

dent, and we use our four source models to show the effect of rupture mode on the P/S635

energy ratio. Radiated energy can be calculated from each simulation using fault-plane636

stresses and velocities via [Rudnicki and Freund, 1981]637

Er =

∬
τ0 + τf

2
∆udS −

∫ ∞

0

∬
τ(t)∆ Ûu(t)dSdt, (20)638

where ∆ Ûu is the slip velocity, τ0 and τf are initial and final shear stress and τ(t) is the639

shear stress as a function of time. The corresponding estimate of radiated energy from640

far-field body-wave displacements is641

E ′r = ρ
∫ ∞

0

∯
[α(VP)2 + β(VS)2]dΣdt, (21)642

where VP and VS are far-field velocities of P and S waves, the integration is over a sphere643

surrounding the fault and the prime symbol here denotes the parameter derived from far-644

field observations instead of from the fault surface. Before considering the P and S con-645

tributions separately, we first verify the internal consistency of our calculations by com-646

paring estimates (20) and (21) for the total energy. These two energy estimates, for each647

source model, are listed in Table 4, and show differences of the order of 1 or 2% (which648

we attribute to errors from focal-sphere sampling, together with effects of the small arti-649

ficial viscosity used in the simulations and neglected in the energy balance calculations)650

verifying the self-consistency of the far-field and on-fault estimates.651

The computed P and S radiated energies for the crack-like and pulse-like rupture653

models are shown in Table 4. The P/S ratio for the crack-like rupture mode, 20, is similar654

to values of 24.4 for the analytical model of Sato and Hirasawa [1973] and 21.8 for the655

numerical model of Kaneko and Shearer [2014]. The S/P energy ratio is larger for pulse-656

like ruptures than for the crack-like case, and larger for growing and steady-state pulses657

than for the arresting pulse rupture mode. This pattern mirrors the behavior of the radia-658

tion ratio ηR [Noda et al., 2013], also shown in Table 4, and examined further in the Dis-659

cussion section. We also note that our radiated energy ratios differ markedly from what660

would be predicted if the rms P- and S-wave spectral shapes were scaled (both amplitude661

and frequency axes) versions of each other (something also noted by Kaneko and Shearer662

[2014]). As shown by Boatwright and Fletcher [1984], the latter estimate is663

ES
r

EP
r

= 1.5(
α

β
)5(

f Sc
f Pc
)3. (22)664

As Table 4 shows, this estimate under-predicts the energy ratio of the crack-like model665

by about a factor of two and over-predicts that of the arresting pulse model by a similar666

factor.667

Fault slip and stresses from the simulations provide two complementary measures668

of average stress drop, denoted ∆σE and ∆σM by Noda et al. [2013]. The former is the669
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Table 4. Comparison energy partitioning and static stress drop among 4 models.652

Expanding crack Growing pulse Steady-state pulse Arresting pulse

Radiated Energy

Er(1015J) 21.01 9.29 2.92 1.14
E ′r (1015J) 20.89 9.17 2.88 1.12

Ratio between ES
r and EP

r

ES
r/EP

r 20 29 27 24
ES
r /E

P
r * 11 18 23 46

Static stress drop

∆σE(MPa) 15.69 9.37 6.41 5.53
∆σM(MPa) 15.66 7.13 4.61 3.36

Radiation ratio

ηR 0.40 0.65 0.46 0.41

All parameters underlined are computed directly from fault-plane stresses and slip from the nu-
merical simulations. Parameters labeled with ′ are derived from far-field displacements or spectra
calculated from the simulations. The energy ratio labeled with ∗ represents results from Eq-22
[Boatwright and Fletcher, 1984].

average static stress drop weighted by the final slip,670

∆σE =

∬
∆σ∆udS∬
∆udS

, (23)671

where ∆σ is the static stress drop as a function of position on the fault surface. As Shao672

et al. [2012] point out, ∆σE is just twice the ratio of so-called "available elastic energy"673

[Kanamori and Rivera, 2006] to the seismic potency. Values obtained directly from Eq-674

23 are listed in Table-4. An alternative measure, called moment-based stress drop [Noda675

et al., 2013] is stress drop weighted by the slip distribution E due to a (hypothetical) uni-676

form stress drop on the same fault surface,677

∆σM =

∬
∆σEdS∬

EdS
. (24)678

For the circular rupture, Eq-24 gives the standard formula Eq-3, with the left-hand side in-679

terpreted now as ∆σM (and a similar expression can be derived for an elliptical rupture).680

The corresponding values of ∆σM for the simulations are listed in Table-4 for compar-681

ison with ∆σE values. If Eq-3 is applied, with rupture radius R estimated from corner682

frequency (Eq-4) using a crack-like model for k, those radius estimates will be biased for683

the pulse-like models by the ratio of the crack- to pulse-like k values in Table 3 (i.e., fac-684

tors of 0.87, 1.13, and 1.25 for P waves, and 0.75, 0.87, and 0.8 for S waves, for growing,685

steady-state, and arresting pulse, respectively). Subsequently using Eq-3 to estimate stress686

drop from radius would lead to stress drop biased by the cube of those factors (Eq-5), if687

the relationship between mean slip (or moment) and stress drop followed the crack-like688

model like Eq-1 or 3. However, actual biases in the stress drop estimates are generally689

–25–



Confidential manuscript submitted to JGR-Solid Earth

more complex than that, because the relationship between mean slip and stress drop also690

becomes modified for pulse-like ruptures.691

We can examine the variability in spectral estimates of stress drop resulting from692

presumably unknown variations in rupture mode. Using values of kP and kS from each693

of four crack-like models (1. Madariaga [1976], 2. Kaneko and Shearer [2014], 3. Brune694

[1970], and the expanding crack model of the current study), we make "blind" stress drop695

(∆σM ) estimates from spectral parameters M0 and fc obtained from the growing, steady-696

state, and arresting pulse models, respectively. These estimates are denoted ∆σMa, ∆σKS ,697

∆σB, and ∆σcrack , respectively. Results for the four stress drop estimates, normalized by698

each of the actual stress drops ∆σM of the pulse-like ruptures (from Table 4) are shown699

in Figure 14. For P-wave estimates, the rupture mode introduces over- and under-estimates700

ranging over roughly a factor of two either way. The S-wave estimates have a somewhat701

larger range, due to a substantial overestimate of ∆σM by the Madariaga [1976] model.702

Figure 14. The ratio between spectrally estimated stress drop and actual moment-based stress drop for the
4 simulated rupture models. Four sets of parameters, kP and kS are used to investigate how large the variabil-
ities of estimations can be. The vertical axis is logarithmic. Also shown is the ratio between ∆σE and ∆σM

for each simulation, denoted by black squares, demonstrating the divergence of these two averages as rupture
mode changes from crack-like to pulse-like.

703

704

705

706

707

The S wave estimates based on Kaneko and Shearer [2014] and the crack-like model708

of the current study are very similar, each biased high by about a factor of two for the709

pulse-like ruptures, and each showing about a factor of two variability about that factor.710

The upward bias is what would be expected as a consequence of the S-wave rupture ra-711
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dius underestimates noted above. That upward bias is sharply reduced, however, when we712

compare with ∆σE (open squares in Figure 14) instead of ∆σM , since both spectral es-713

timates ∆σKS ([Kaneko and Shearer, 2014]) and ∆σcrack (current study) represent quite714

accurate ∆σE values for the steady-state and arresting pulse ruptures. The Brune estimate715

is low for the crack-like rupture model, but within plus/minus 40% for the pulse-like rup-716

tures.717

This reduction of bias when bias is taken relative to ∆σE is a result of the differ-718

ences in spatial distribution of slip of the pulse- versus crack-like models. For the pulse-719

like models, ∆σE exceeds ∆σM , with the excess being related to the level of heterogene-720

ity of stress drop [Noda et al., 2013]. As indicated in Table 4 and Figure 14, ∆σE and721

∆σM for the expanding crack are nearly identical as expected. However, in pulse-like rup-722

tures, ∆σM is 24%, 28% and 40% smaller than ∆σE in growing, steady-state and arrest-723

ing pulse, respectively. Such a phenomenon is similarly observed in [Noda et al., 2013].724

The reason is that the healing of the pulse-like rupture freezes in the static slip before it725

reaches the elliptic shape of the circular static crack, which has the form [Eshelby, 1957]:726

∆u(l) = I
√

R2 − l2[1 − H(l − R)], (25)727

where I is a constant proportional to the stress drop, R is the rupture radius, l is the dis-728

tance to hypocenter and H is a Heaviside function. In Figure 15, the dashed and solid729

lines denote the best fit solutions of the form of Eq-25 and the simulated models (shown730

along the inplane direction), respectively. As expected, the crack-like rupture model closely731

follows the Eshelby solution, consistent with the close agreement we found between ∆σM732

and ∆σE . The pulse-like model deviates much more from the Elshelby solution, with the733

main difference being weaker dependency of slip on hypocentral distance (apart from the734

region right around the nucleation patch). The resulting contrast in spatial patterns of slip735

between crack- and pulse-like rupture elevates ∆σE relative to ∆σM in the pulse-like case.736

8 Discussion743

The slip-pulse durations in our models are mostly in the range of 1-2 seconds (Fig-744

ure 13a). This range is also representative of slip-pulse durations inferred in observa-745

tional studies, at least for shallow crustal earthquakes [e.g. Heaton, 1990; Somerville et al.,746

1999]. The source dimension of our simulations is such that the secondary corner intro-747

duced by the occurrence of these pulse-like ruptures only affects the spectral shape at fre-748

quencies exceeding the lower corner frequency by at least a factor of 20. The spectral fit-749

ting procedure used here (motivated by standard observational practice) appears to provide750

reliable estimates of the lower corner frequency and the intermediate spectral slope in this751

case, since the frequency band used in fitting, 0.05 fc < f < 20 fc , is entirely below the752

higher corner frequency. As indicated in Figure 16, further narrowing the frequency band753

to 0.05 fc < f < 10 fc , as in Kaneko and Shearer [2014, 2015] only slightly alters the754

spectral fit, (and only at low take-off angles). The use of the narrower band suppresses755

some of the azimuthal variation in the corner-frequency distribution (e.g., near the z axis756

in Figure 11a), but has little effect on the averaged values, which are summarized in Table757

5. Compared with the results from the narrower band, k and n estimates from the broader758

band differ by a maximum of around 10% and 12% respectively (comparing Tables 2 and759

5). When we increase the upper frequency limit to 30 fc (very near to the second corner760

frequency), there is no significant change in the estimates of k and n. In summary, the761

results are fairly insensitive to our choice the spectral range, although this conclusion de-762

pends upon the fact that the rupture dimension in the models was large enough to provide763

good separation between the corner frequencies.764

In observational studies, there exists great variability in estimates of earthquake pa-772

rameters derived from seismic spectra, such as stress drop and radiated energy. Simula-773

tions, for which the earthquake parameters are precisely known (from near-field calcula-774

tions) are a valuable aid in the interpretation of spectra in terms of earthquake parame-775
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Table 5. Spectral parameters of P and S waves for the 4 models obtained, using modified frequency band
0.05 fc < f < 10 fc

765

766

Expanding crack Growing pulse Steady-state pulse Arresting pulse

V2
r 0.88β 0.85β 0.78β 0.72β

V3
r 0.84β 0.81β 0.74β 0.66β

kP 0.38 0.40 0.32 0.30

kS 0.29 0.35 0.32 0.34

kP

kS
1.3 1.1 1.0 0.9

nP 2.3 2.0 1.9 1.9

nS 2.0 1.7 1.8 1.9

kP
stack

0.40 0.43 0.34 0.30

kS
stack

0.31 0.38 0.32 0.32

kP
stack

kS
stack

1.3 1.1 1.1 1.0

nP
stack

2.3 2.0 1.9 1.9

nS
stack

2.0 1.8 1.8 1.9

–28–



Confidential manuscript submitted to JGR-Solid Earth

Figure 15. Slip distribution, comparing crack-like and pulse-like models. The blue solid and dashed lines
are the final slip distribution from expanding crack model and best fitted Eshelby’s solution. The pink solid
and dashed lines are the final slip distribution from expanding crack model and best fit Eshelby solution. In
both sets of lines, the degree of discrepancy between obtained models and the theoretical static solution deter-
mines the appropriateness of conventional Eq-1 or Eq-3 for computing static stress drop. The misfit at small
radius is due to the nucleation effect (different stress drop in the nucleation zone).

737

738

739

740

741

742

ters and can provide useful insight into the origin of the variability of spectrally-derived776

estimates. Our analysis of the spectral consequences of the rupture type transition from777

classic crack-like to pulse-like mode may have application in the estimation of earthquake778

parameters for particular earthquakes. For example, we may be able to sharpen some pa-779

rameter estimates in cases where we have independent evidence of rupture mode, e.g.,780

from finite-fault inversion. In such cases, our results for empirical parameters kP and kS
781

(section 5) and for the effect of pulse-like rupture on stress drop estimation (Section 7)782

may be used to refine spectral estimates of source parameters. Likewise, the spectral fall-783

off rates (nP and nS) could help refine frequency-domain radiated energy estimates (ob-784

tained by the application of Parseval’s theorem to Eq-21), which are highly dependent on785

presumed spectral shapes (e.g., [Hirano and Yagi, 2017]). In other cases, absent detailed786

kinematic inversion results (especially for small to intermediate earthquakes), rupture types787

are usually unknown to us. In those cases, the results (Section 6) showing double corner788

frequency spectral shapes of pulse-like models may provide interpretive guidance. For ex-789

ample, Denolle and Shearer [2016] find a double corner frequency model fits their anal-790

ysis of large, shallow thrust earthquakes, and since the upper corner appears to be too791

high in frequency to be related to a fault dimension, a possible interpretation would re-792

late the upper corner to slip pulse duration (and Denolle and Shearer [2016] discuss other793

interpretations). Future work resolving higher frequency spectral properties, may provide794

more quantitative constraints on the association of pulse width with the second corner fre-795

quency, the extent to which pulse width may scale with other parameters (e.g., moment),796

and the asymptotic decay slope for pulse-like ruptures.797

As noted earlier, the simulations provide precise values of radiated energy, seismic798

moment and static stress drop for all the rupture models, and this enables us to consider799
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Figure 16. Effect of frequency band on spectral fitting. (a) Black solid lines are P and S spectrum at 22.5◦

take-off angle. The red and blue dashed lines are best fit Brune model using 0.05 fc∼10 fc and 0.05 fc∼20 fc ,
respectively. At low take-off angle, slight difference of fitting occurs at high frequency. (b) Black solid lines
are P and S spectrum at 82.5◦. The red and blue dashed lines are best fit Brune model using 0.05 fc∼10 fc and
0.05 fc∼20 fc , respectively. At high take-off angle, both bands result in identical fitting.

767

768

769

770

771

the implications of rupture mode for other quantities derived from these source param-800

eters. The radiation ratio (we follow the terminology of Noda et al. [2013] for what is801

sometimes called the radiation efficiency, though its value can exceed 1), defined as802

ηR =
2µER

M0∆σE
, (26)803

is an interesting example, and values are compiled in Table 4 and shown in Figure 17a804

(red triangles). It is required to clarify that the static stress drop here denotes ∆σE be-805

cause in considering energy partitioning, we need energy-based stress drop estimates in-806

stead of moment-based estimates (∆σM ) although they are not easy to seismologically dis-807

tinguish them. The blue star symbol denotes the average amplitude of the final slip spatial808

gradient, which can serve as a good indicator of rupture type (the small value of slip gra-809

dient implies flat slip distribution, as in the more pulse-like ruptures, and the large value810

denotes crack-like mode. Its mathematical expression is
∫
L
|
d∆u(x)
dx |dl/L in which L is rup-811

ture length along the inplane direction (X), l is the distance variable and ∆u is the slip812

function). When the rupture type transits from pulse-like to crack-like (from left to right813

in Fig 17a), the radiation ratio initially increases, has a maximum for the growing pulse814

case, and then falls for the crack-like case. This behavior is probably a consequence of815

the undershoot of the static stress drop, relative to the maximum dynamic stress drop, in816

pulse-like models, as seen in Figure 3b. To verify that this dependence of radiation ratio817

on rupture mode is not specific to our method of inducing the rupture mode transition (via818

scaling of Vw), we do a similar set of simulations, but inducing the transition from pulse-819

like to crack-like modes by raising initial shear stress (with Vw fixed). We also add more820

simulations (a total of 22) to refine the resolution of the rupture-mode transition. The re-821

sults, shown in Figure 17b, confirm that the transition of rupture from decaying to grow-822

ing pulse-like behavior is associated with a large (up to factor of 1.6), systematic increase823
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in radiation ratio, and that the transition to crack-like rupture corresponds to an equally824

large drop in radiation ratio (the small increases in efficiency for the highest initial-stress825

case is associated with a supershear rupture transition).826

Figure 17. Radiation ratio variation with rupture mode transition. (a) radiation ratio (red dashed line) and
slip gradient (rupture type indicator, blue dashed line) of 4 models show with rupture mode is changed to
crack-like, radiation ratio has an apparent reduction. (b) Similar pattern can be observed when we switch to
adjust initial shear stress to regenerate a rupture mode transition.

827

828

829

830

9 Conclusions831

Spontaneous rupture simulations with rate and state friction and dynamic weakening832

show a rupture mode transition from crack- to pulse-like under adjustment of the critical833

weakening velocity Vw . Four representative models provide a basis for examining the ef-834

fect of rupture mode on source parameter estimates: an expanding crack, a growing pulse835

(increasing peak slip velocity with rupture radius), a steady-state pulse (nearly constant836

peak slip velocity), and an arresting pulse (with spontaneous rupture termination). Relative837

to a crack-like rupture with similar geometry, a pulse-like rupture leads to additional com-838

plexity in the far-field displacement spectra, including a double corner-frequency struc-839

ture, with the higher corner frequency inversely proportional to pulse duration. The focal-840

sphere-averaged lower P and S wave corner frequencies (normalized to source dimension)841

are systematically higher for pulse-like models than for crack models of comparable rup-842

ture velocity (Table 3), while the lower P-wave corner is less sensitive to rupture mode.843

The P/S corner frequency ratio also varies systematically with rupture mode, from ∼1.3844

for the crack model to ∼0.9 for the arresting pulse (Table 2). The spectral slope (above the845

lower corner) in most cases is only slightly affected by rupture mode; in nearly all cases,846

this slope is in the range −2±0.2, with the P spectral slope more sensitive to rupture mode847

than the S slope (Table 2).848

The slip-weighted stress drop ∆σE exceeds the moment-based stress drop ∆σM for849

pulse-like ruptures, with the ratio ranging from about 1.3 to 1.65, while they are equal for850

the crack-like case. The variations in rupture mode modeled in this study introduce vari-851
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ability of the order of a factor of two in standard (i.e., crack-model based) spectral esti-852

mates of stress drop, accompanied by some systematic bias. The S-wave spectral estimates853

for the pulse-like ruptures are biased high by about a factor of two when stress drop is in-854

terpreted as ∆σM , but show little bias when stress drop is interpreted as ∆σE (and P-wave855

estimates show less systematic bias). The transition from arresting- to growing-pulse rup-856

ture is accompanied by a large (factor of ∼1.6) increase in the radiation ratio ("radiation857

efficiency"), with a comparable drop in that ratio at the transition from growing-pulse to858

crack-like rupture. Thus, variations in rupture mode may account for portion of the scatter859

in observational spectral estimates of source parameters, and, in instances in which inde-860

pendent constraints on rupture mode are available, the results derived here (in particular,861

values for rupture style-dependent normalized corner frequencies kP and kS and spectral862

slopes nP and nS) may help sharpen those estimates.863
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