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Memory-Efficient Simulation of Anelastic Wave Propagation

by Steven M. Day and Christopher R. Bradley

Abstract Realistic anelastic attenuation can be incorporated rigorously into finite
difference and other numerical wave propagation methods using internal or memory
variables. The main impediment to the realistic treatment of anelastic attenuation in
3D is the very large computational storage requirement imposed by the additional
variables. We previously proposed an alternative to the conventional memory-
variable formulation, the method of coarse-grain memory variables, and demon-
strated its effectiveness in acoustic problems. We generalize this memory-efficient
formulation to 3D anelasticity and describe a fourth-order, staggered-grid finite-
difference implementation. The anelastic coarse-grain method applied to plane wave
propagation successfully simulates frequency-independent Qp and Qs. Apparent Q
values are constant to within 4% tolerance over approximately two decades in fre-
quency and biased less than 4% from specified target values. This performance is
comparable to that achieved previously for acoustic-wave propagation, and accuracy
could be further improved by optimizing the memory-variable relaxation times and
weights. For a given assignment of relaxation times and weights, the coarse-grain
method provides an eight-fold reduction in the storage requirement for memory vari-
ables, relative to the conventional approach. The method closely approximates the
wavenumber-integration solution for the response of an anelastic half-space to a
shallow dislocation source, accurately calculating all phases including the surface-
diffracted SP phase and the Rayleigh wave. The half-space test demonstrates that the
wave field-averaging concept underlying the coarse-grain method is effective near
boundaries and in the presence of evanescent waves. We anticipate that this method
will also be applicable to unstructured grid methods, such as the finite-element
method and the spectral-element method, although additional numerical testing will
be required to establish accuracy in the presence of grid irregularity. The method is
not effective at wavelengths equal to and shorter than 4 grid cell dimensions, where
it produces anomalous scattering effects. This limitation could be significant for very
high-order numerical schemes under some circumstances (i.e., whenever wave-
lengths as short as 4 grids are otherwise within the usable bandwidth of the scheme),
but it is of no practical importance in our fourth-order finite-difference implemen-
tation.

Introduction

Finite-difference (FD), finite-element, spectral-element,
and pseudospectral methods are currently able to solve tran-
sient three-dimensional seismic-wave propagation problems
over domains sufficiently large that anelastic attenuation
should be included. Realistic treatment of anelastic losses is
especially important for simulating the earthquake-induced
response of complex geologic structures such as sedimentary
basins (e.g., Frankel and Vidale, 1992; Yomogida and Etgen,
1993; Olsen and Archuleta, 1996; Wald and Graves, 1998;
Pitarka et al., 1998; Sato et al., 1999; Olsen et al., 2000).
An important component of the ground motion in basins is
the trapping of incident waves at the basin edges, resulting

in the excitation of surface waves in the basin sediments
(e.g., Field, 1996; Boore, 1999). These basin-edge-induced
waves in turn may reverberate within the basin. Numerical
simulations that neglect anelastic losses in the sediments
may seriously overpredict the amplitude and duration of the
ground motion, even if the seismic velocity structure and
source are well modeled. Realistic formulation of anelastic
losses is also important in other applications of 3D numerical
simulations. These include studies directed at seismic veri-
fication of the comprehensive test ban treaty. The latter stud-
ies have employed full waveform simulations over regional
crustal paths, and these simulations are strongly affected by
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both intrinsic and scattering attenuation (Al-Kahtib and
Mitchell, 1991; Jones et al., 1998; Mitchell, et al., 1997).
Additionally, 3D modeling of seismic reflection profiles
(e.g., Carcione et al., 1992), and global-scale seismic wave-
form modeling (e.g., Igel and Weber, 1995; Yoon and
McMechan, 1995; Chaljub and Vilotte, 1998; Komatitsch
and Tromp, 2000) require realistic and computationally trac-
table treatment of attenuation.

A fully general formulation of anelasticity represents
stress at (x, t) as a convolution of the time history of strain
at x with a relaxation function, which can be specified in
terms of the corresponding relaxation spectrum (e.g., Now-
ick and Berry, 1972). This convolutional form of the stress-
strain operator is not useful for time-domain numerical
simulations, however, because it would require enormous
storage for the strain histories and an impossibly large com-
putational load to execute the convolutions. Anelastic losses
can be incorporated into time-stepped numerical methods
(such as the FD method) practically, yet rigorously, by in-
troducing a set of internal or memory variables at each stress
node point (Day and Minster, 1984). The evolution of each
memory variable is governed by a linear, constant-coeffi-
cient, first-order differential equation analogous to that gov-
erning the standard linear solid (e.g., Day and Minster, 1984;
Emmerich and Korn, 1987; Carcione et al., 1988; Witte and
Richards, 1990; Krebs and Quiroga-Goode, 1994; Blanch et
al., 1995; Xu and McMechan, 1995). Each memory variable
represents a distinct relaxation process and is associated with
a distinct relaxation time, and the superposition of several
memory variables can be used to approximate the relaxation
function appropriate to the material being modeled. Day and
Minster (1984) prove that, for any continuous relaxation
spectrum, the corresponding linear operator that maps strain
history into stress can be uniformly approximated using a
set of discrete relaxation times (and therefore a discrete set
of memory variables).

The benefit of the memory variable formulation is that
only the current value of each of the N memory variables
need be stored (along with the other field variables, typically
the stress and velocity components), because the current
value is sufficient to permit its first-order ordinary differ-
ential equation (ODE) to be stepped forward in time. If N is
small, the added memory requirement (relative to lossless
elasticity) and computational load may not be prohibitive.

The challenge in implementing the memory variables
approach is that seismological and laboratory observations
usually imply an anelastic quality factor (Q) for rock that is
at most weakly dependent on frequency and often well ap-
proximated by a constant. This in turn implies a relaxation
function with a broad spectrum of relaxation times (e.g.,
Lomnitz, 1957). Each memory variable contributes only a
single relaxation time to the relaxation function. In order to
approximate a constant Q over a given frequency band, it
has been found in practice that two to three memory vari-
ables are required per decade of bandwidth. This require-
ment applies to each stress component and to each compu-

tational unit cell. In three-dimensional anelasticity, for
example, where there are six independent stress components,
roughly two to three dozen additional stored variables per
unit cell would be required to achieve two decades of nearly
constant Q.

Day (1998) (hereafter D98) proposed an alternative for-
mulation he referred to as coarse-grain memory variables. In
this formulation, there is only a single memory variable per
stress component per unit cell, but a fast spatial scale is
introduced over which the relaxation time varies. The wave
field spatially averages the relaxation processes over the fast
scale, resulting in a good approximation to frequency-
independent Q. It was shown in D98 that this method per-
forms well in FD solutions of the scalar-wave equation,
achieving constant Q within a 3% tolerance over two de-
cades in frequency. If a precise representation of Q is only
required over a narrower bandwidth, the number of memory
variables can be reduce to even fewer than one per unit cell
(per stress component), potentially reducing memory usage
to only fractionally more than that of purely elastic calcu-
lations.

In this article, we extend the coarse-grain memory vari-
able approach to anelastic wave propagation in three dimen-
sions. The method is implemented in a fourth-order,
staggered-grid FD program, and we verify its accuracy for
plane P and S waves. We then show, by comparison with a
wavenumber-integration solution, that the method also gives
accurate solutions for the response of an anelastic half-space
to a shallow dislocation source. The half-space response in-
cludes strongly excited surface-diffracted SP and Rayleigh-
wave phases, each of which is reproduced with accuracy
comparable to that achieved in the elastodynamic (infinite
Q) case. This result demonstrates that the averaging concept
underlying the method is still effective near boundaries and
in the presence of evanescent waves.

Background

This section first reviews the conventional memory vari-
able formulation and its relationship to the relaxation spec-
trum and to the frequency dependence of Q. Then we review
the coarse-grain alternative of D98. Finally, we review the
performance and limitations of the coarse-grain approach
noted by D98 for the acoustic case. We adhere to the nota-
tion of D98, using M to denote the time-dependent modulus,
that is, the step response of the stress-strain relationship,
namely

t

r(t) � M(t � t�)de(t�), (1)�
0

where r is the stress and e is the strain. The unrelaxed mod-
ulus Mu, the relaxed modulus MR, the relaxation of the
modulus, dM and the normalized relaxation function �, are
given by
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M � M(0), (2)u

M � M(�), (3)R

dM � M � M , (4)u R

and

M(t) � M � dM�(t). (5)R

The relaxation function can be written in terms of a relaxa-
tion spectrum U:

�

�t/s�(t) � e U(ln s)d(ln s) (6)�
��

(Nowick and Berry, 1972).

Conventional Memory Variable Method

We approximate the continuous relaxation spectrum
with a discrete spectrum:

N

U(ln s) � k d(ln s � ln s ), (7)� i i
i�1

where si is a relaxation time, ki is the relative strength of the
corresponding relaxation, and N is the number of relaxation
terms in the approximation. As noted by Day and Minster
(1984), the si and ki can also be interpreted as the poles and
residues, respectively, of the operational modulus, namely,
the Laplace transform of M(t), after the approximation im-
plied by equation (7) has been introduced. As shown by Day
and Minster (1984), and in the current notation in D98,
equations (1) through (7) are equivalent to the stress-strain
relationship

N

r(t) � M e(t) � f (t) , (8)u � i� �
i�1

in which the fi, i � 1 . . . , N are internal, or memory,
variables that evolve, respectively, according to the N first-
order differential equations

df (t) dMi
s � f (t) � k e(t), (9)i i idt Mu

which are specified by the 2N values of si and ki, i � 1,
. . . , N. The corresponding approximation to Q�1(x) is (in
the low-loss approximation)

N
dM k xsi i�1Q (x) � . (10)� 2 2M x s � 1i�1u i

In the conventional memory variables approach, 2N val-
ues of si and ki are chosen in such a way that equation (10)
is a good approximation to some target Q�1(x). Typically,
the target is a constant Q over a specified bandwidth, al-
though the power laws Q � Q0x

� are sometimes of interest.
Various schemes have been developed to optimize the ap-
proximation of constant Q (e.g., Emmerich and Korn, 1987;
Carcione et al., 1988; Witte and Richards, 1990; Krebs
and Quiroga-Goode, 1994; Blanch et al., 1995; Xu and
McMechan, 1995). An approximation to frequency-
independent Q that is adequate for most applications can be
obtained with roughly one memory variable per octave
(Robertsson et al., 1994; Blanch et al., 1995).

The additional storage required for the memory vari-
ables can easily become the dominant factor limiting prob-
lem size, particularly in 3D where there are six stress com-
ponents (and therefore 6N memory variables per unit cell).
For example, achieving nearly constant Q over two decades
in frequency in a 3D FD wave propagation calculation
roughly quadruples the storage for anelastic simulations,
compared with perfectly elastic simulations (D98). The com-
posite memory variables approach of Xu and McMechan
(1995) can reduce the memory variable storage by a factor
of 2 by storing only those linear combinations of the con-
ventional memory variables that appear in the equations of
motion. However, for the preceding example, which is rep-
resentative of the kind of anelastic simulation that is of in-
terest in seismological applications, memory variables will
still dominate the storage requirements.

Coarse-Grain Memory Variables

D98 proposed an alternative to using N relaxation times
si and strengths ki (and therefore N corresponding memory
variables) at each point to approximate the relaxation spec-
trum on a pointwise basis. The D98 alternative is to use only
a single relaxation (and memory variable) at each point, but
permit that relaxation time, together with a weighting func-
tion, to vary spatially over a fast spatial scale. By fast scale
we mean that the scale length of the variations is shorter
than the minimum wavelength of the wave field (but larger
than the computational unit cell size of the spatial discreti-
zation). When we introduce this weighted spatial depen-
dence into the relaxation equation (9), it becomes

df(x, t) dM
s(x) � f(x, t) � w(x) e(x, t) (11)

dt Mu

where w is the weighting function. The stress is then the sum
of the instantaneous elastic response plus a single memory
term f:

r(x, t) � M [e(x, t) � f(x, t)]. (12)u

The fast or subwavelength scale spatial dependence, shown
explicitly in equation (11), is used to simulate the target
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relaxation spectrum and not to model real spatial variations
in material properties. There is also implicit in equation (11)
a slow scale, over which dM/Mu may vary if we wish to
model real spatial variations in Q. We suppress this slow
scale in the notation because our focus is on the use of the
fast scale to simulate the relaxation spectrum [and thereby
Q(x)].

D98 gave a prescription (equations 18–21 of D98) for
the construction of s(x) and w(x) in terms of the target re-
laxation spectrum. In that article, it was argued, from per-
turbation theory, that a model equation (11) following this
prescription should reproduce the target Q(x) if s(x) and
w(x) are periodic in space with a spatial period shorter than
1/2 the minimum wavelength of interest. The D98 method
thus mimics the actual physical origin of the relaxation spec-
tra of earth materials (i.e., heterogeneity at the microscopic
level) but on a coarser, though still subwavelength scale.

Implementation for Acoustic Case

D98 also gave a practical coarse-grain implementation
for the acoustic wave equation, discretized on a 3D lattice.
In that implementation, the relaxation spectrum is first ap-
proximated in the form (7), with N equal to 8. Then s(x)
takes the eight different discrete values sk, k � 1, . . . , 8,
and these are assigned to the stress node points in a periodic
array, with the period in each lattice direction equal to twice
the corresponding principal lattice period. The eight values
of w(x), wk, are given by the eight relaxation strengths kk in
equation (7) but normalized to have unit volumetric mean.
The normalization of the relaxation function implied by
equation (5) then requires wk � 8 kk. The wk values are
assigned in the same 3D periodic array as the sk values.

To approximate the special case of frequency-indepen-
dent Q, D98 used values of sk equally spaced on a logarith-
mic scale between lower and upper absorption-band cutoffs
sm and sM, respectively. All weights wk were set to 1. In the
acoustic case, the appropriate modulus in equation (9) is the
bulk modulus j, and the bulk modulus relaxation dj/ju was
set such that the specified constant Q value, Q0, is realized
at some prescribed reference frequency x0 (near the center
of the absorption band). The appropriate dj/ju then satisfies

�1
pdj s djM�1Q � ln � ln (x s ) . (13)0 0 m� � � �2j s ju m u

This procedure successfully simulates frequency-indepen-
dent Q, to within 3% tolerance, over 2 orders of magnitude
in frequency, yet requires only one memory variable per
stress node. A limitation of the method is that it produces
strong scattering at wavelengths shorter than 4 grid cells (as
predicted by the perturbation analysis and confirmed by nu-
merical experiments in D98). As a result, the method is prob-
ably most appropriate for use with relatively low-order FD
and finite-element methods, for which wavelengths shorter

than 4 grid cells are already subject to large errors due to
numerical dispersion. On the basis of acoustic wave tests in
D98, the method appears to be well suited to the fourth-order
staggered-grid FD method that is now widely used in seis-
mological applications.

Anelastic Formulation

The coarse representation of the relaxation spectrum is
easily generalized from the acoustic to the anelastic case,
and the generalization is particularly simple for isotropic
anelasticity, to which we limit ourselves in this article. In
the isotropic case, the stress-strain relationship can be par-
titioned into separate relationships of the form of equation
(12) for the mean stress rkk/3 (in terms of the volumetric
strain ekk, a volumetric memory variable, and bulk modulus,
j), and the deviatoric stresses (in terms of the deviatoricr�ij
strains , corresponding memory variables, and shear mod-e�ij
ulus l), respectively. Considering that only five of the six
deviatoric stress (and strain) components are independent,
this formulation leads to one equation of the form of equa-
tion (11) for each of six memory variables. For example,
adding attenuation to a 3D staggered-grid FD method (as-
suming a conventional velocity-stress formulation, e.g.,
Graves [1996]) requires adding six memory variables to each
unit cell of the grid.

In the aforementioned formulation, one could assign
different frequency dependencies to the compressional and
shear Q values, Qj(x) and Ql(x), respectively. This assign-
ment would be accomplished by using one set of sk and wk

in the equation controlling the memory variable for mean
stress, and a different set in the five equations controlling
the memory variables associated with the deviatoric stresses.
The development is less cumbersome, however, if we make
the additional assumption that Qj(x) and Ql(x) share a com-
mon frequency dependence. That is, we assume that their
ratio is a frequency-independent constant, Qj0/Ql0 (that may
vary spatially, however). In that case, there is one common
set of relaxation times and weights (but, in general, different
modulus relaxations, dj/ju and dl/lu, respectively) for the
mean stress and deviatoric stress versions of equation (11).
One advantage of this simplification is that we can avoid
partitioning the stress tensor into mean stress and deviatoric
stress parts. Instead, we form linear combinations of the
mean stress and deviatoric stress memory variables, choos-
ing combinations that correspond to the usual physical com-
ponents of the total stress tensor. A second advantage is that
we can then write the memory variable evolution equation
(11) in terms of the modulus relaxations Ap � d(j � 4l/3)/
(j � 4l/3)u and As � dl/lu, which can be related to the Q
values for P and S waves, Qp and Qs, respectively.

The above procedure is detailed in the Appendix and
leads to the following set of equations:

2
�r � 2l e � (j � l ) e d � n , (14)ij u ij u u kk ij ij3
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and

dnij
s � n � w 2l A e �ij u s ij�dt (15)

4
�j � l A � 2l A e d ,u u p u s kk ij�� � � �3

where Ap and As are constants that scale with and�1Qp

, respectively. For the special case of nearly frequency-�1Qs

independent Q, these constants are

�12 s 2M�1 �1A � Q ln 1 � Q (ln x s ) , (16)p p0 p0 0 m� � � �p s pm

and

�12 s 2M�1 �1A � Q ln 1 � Q (ln x s ) , (17)s s0 s0 0 m� � � �p s pm

where Qp0 and Qs0 are the Q values at reference frequency
x0. In equations (15) to (17), sM, sm, and x0 are time-inde-
pendent constants. The variables Qp, Qs, lu, and ju are time
independent but vary on the slow spatial scale, namely, the
scale representing actual physical variations of the model.
The variables s and w are time independent but vary on the
fast scale, namely, the scale representing the coarse graining
to simulate the relaxation spectrum (and do not vary on the
slow spatial scale). The six anelastic memory variables nij

are time dependent and vary on both spatial scales.

Staggered-Grid Finite-Difference Implementation

We incorporate coarse-grain anelasticity into a 3D stag-
gered-grid FD method. The implementation is analogous to
that used in D98 for the acoustic case. The underlying elas-
todynamic code, that of Olsen (1994), uses the velocity-
stress formulation in which the three velocity components
and six stress components are the dependent variables. This
method approximates spatial derivatives with fourth-order
accuracy and time derivatives with second-order accuracy.
Graves (1996) gives a detailed description of the difference
equations, and our formulation differs from that formulation
only in the location of the free surface within the unit cell.
We use the free-surface formulation that Graves calls the
“zero-stress” formulation but with the roles of shear and nor-
mal stress interchanged relative to Graves (1996, equation
[15]).

Figure 1 summarizes the geometrical structure of the
anelastic program. At each time step, the program uses the
nodal velocities to approximate the strain rate . The time-ėij

differentiated form of equation (15) provides a first-order
ODE to be solved for the (time-differentiated) memory vari-
able , given the values. Then, the time-differentiatedṅ ėij ij

form of equation (14) gives an expression for the stress rate
in terms of the values and values. The only changes˙ṙ ė nij ij ij

from the perfectly elastic program are the following: (1) six
new variables (the memory variables ) are assigned to eachṅij

unit cell; (2) each unit cell is assigned one of eight relaxation
times sk and one of the eight associated weights wk in an
arrangement described later; (3) the elastic stress-strain re-
lation is augmented by the term � , giving equation (14)ṅij

(in time-differentiated form); and (4) memory variable isṅij

updated at each time step by solving a difference approxi-
mation to equation (15) (in time-differentiated form).

The values of sk and wk depend upon the attenuation
model, and we give specifics for the special case of fre-
quency-independent Q later. Once these values have been
specified, they are distributed in the grid according to the
following scheme. Grid unit cells are indexed by the three
integers p, q, r, such that a reference point in each cell center
is located at vector position xpqr � pa1 � qa2 � ra3, where
aj (j � 1, 2, 3) are the lattice vectors of the grid. Then the
cell at xpqr is assigned sk, where k � 1 � pmod 2 �
2(qmod2) � 4(rmod2), namely,

s(x ) � s , (18)pqr 1�p mod 2�2(q mod 2)�4(r mod 2)

and similarly for w,

w(x ) � w . (19)pqr 1�p mod 2�2(q mod 2)�4(r mod 2)

The p, q, and r can be permuted arbitrary in equations (18)
to (19) without making any essential difference to the
method. The arrangement (18) is sketched in Figure 1.

Equation (15) is solved using a simplification of the
difference equation approximation given in D98 (see equa-
tion [14] in D98). The simplification is the same one used
by Day and Minster (1984), and consists of approximating
the exponential by its first diagonal Padé approximant,
namely, . The result isx x�x � �e � (1 � )/(1 � )

2 2

1 1
� �˙s /dt � n (t) � [f(t) � f(t � dt)]k ij� �2 2

ṅ (t � dt) �ij
1
�s /dt �k� �2

(20)

where

f(t) � w 2l A ė (t) �k u s ij� (21)

4
�j � l A � 2l A ė (t)du u p u s ll ij�� � � �3

We have not written out the spatial dependence in equations
(20) to (21), since all quantities are evaluated at the same
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Figure 1. Geometry of the finite-difference grid and the unit cell. Memory variables
�ij are colocated with the corresponding stresses rij. The relaxation times sk repeat with
spatial period equal to twice the unit cell dimension.

location xpqr. As before, k is the coarse relaxation index
1 � pmod2 � 2(qmod2) � 4(rmod2).

The relaxation times and weights depend upon the Q(x)
model. We present numerical examples for the case of nearly
frequency-independent Q, as represented by a relaxation
spectrum constant on support interval (ln sm, ln sM). D98
showed that the set of relaxation times

2k � 1
ln s � ln s � (ln s � ln s ) (22)k m M m16

(uniformly distributed over the support interval), with all
weights equal to 1, provides a simple, though certainly not
optimal, approximation, and we adopt that approximation in
this article. In this case of nearly constant Q, Ap and As are
given by equations (16) and (17), respectively.

A convenient way to specify the bounds of the absorp-
tion band, sm and sM, is in terms of the Nyquist frequency
xn associated with the computational time step. We adopt
the bounds and , where Nt is the�1 �1s � x s � 5N xm n M t n

total number of time steps in the computation and find that

this choice ensures a nearly constant Q throughout the full
usable bandwidth of the FD computations.

The above implementation does not depend in any es-
sential way on the particular spatial differencing scheme em-
ployed. In Figure 1, we have illustrated the staggered veloc-
ity-stress formulation, and it is for this scheme (with
fourth-order accurate difference operators) that we compute
the numerical examples in the next section. However, the
only essential geometrical elements of our implementation
are the logically rectangular grid structure, the association
of the s values (and w values) with alternating unit cells (via
equations (18) to (19)), and the positioning of each memory
variable in coincidence with the corresponding stress com-
ponent. The formulation therefore generalizes immediately
to any logically rectangular structured grid scheme.

Numerical Examples

D98 performed a perturbation analysis that suggests that
the coarse-grain method should be accurate for wavelengths
exceeding four times the unit cell dimension. Numerical tests
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in that article bore out this expectation for the acoustic-wave
equation with frequency-independent Q. Numerically sim-
ulated plane-wave pulses matched their analytical counter-
parts to high accuracy, and all numerical artifacts were
strictly confined to the frequency band corresponding to
wavelengths shorter than four grid cells. The apparent Q in
those tests, as a function of frequency, was denoted by Q̂(x).
It was estimated from the ratio of the pulse spectra at suc-
cessive locations, by

�2c ln|u(x � L, x)/u(x, x)|�1Q̂ (x) � (23)
xL

(which corrects a typographical error in equation (48) of
D98), where u is the Fourier transformed displacement, c is
the wavespeed, and L is the propagation distance. The ap-
parent Q in the acoustic plane-wave tests matched the target
Q to within a few percent over more than two decades of
frequency.

In this article we perform similar plane-wave numerical
tests for the anelastic case. The plane-wave tests will verify
that the anelastic algorithm is correctly programmed, of
course. However, the plane-wave tests serve a further pur-
pose. The fast-scale variations of s(x), which produce short-
wavelength artifacts in the acoustic case, will in the anelastic
case also produce some coupling among the P, SV, and SH
components of plane-wave displacement. It is necessary to
verify that any artifacts resulting from the cross-coupling are
negligible within the usable bandwidth of the FD method
(which we take to be wavelengths exceeding five unit cell
dimensions). The plane-wave tests also serve to demonstrate
that the cross-coupling does not lead to any numerical insta-
bility that might not have been present in the acoustic case.

We then further test the anelastic method by applying
it to a shallow point dislocation source in a uniform half-
space. This 3D numerical test has the important attribute that
the source excites free-surface interface waves of several
types, including a Rayleigh wave. Boundary condition im-
plementation often controls overall accuracy for the FD
method, and simulation of the uniform half-space Rayleigh
wave has frequently proven to be a decisive test of elasto-
dynamic FD techniques.

Plane-Wave Test

We generate plane P and S waves by imposing a min-
imum-phase velocity pulse everywhere on one lattice plane
of the grid, with motion either normal (P wave) or parallel
(S wave) to the plane. Estimates of the apparent Q values
are obtained from spectral ratios of the velocity at successive
distances from the source plane, using equation (23), and
setting c to the appropriate wavespeed, � (P-wave case) or
b (S-wave case). Results are shown in Figure 2 for the case
Qs0 � 50, Qp0 � 50, �/b � 31/2. The inset shows the suc-
cessive velocity pulses at distances of 10, 110, and 210 times
the grid-cell size dx, for source velocity pulse shape te�t/2pT.

The time unit in the figure is the S-wave propagation time
across dx; in this unit the characteristic source duration (the
inverse corner frequency) T is 22. Velocity is normalized to
give unit peak velocity at the source plane. The apparent Q
values, Q̂p (x) and Q̂s(x), shown in Figure 2 were obtained
from velocities at the first pair of sites, but the results are
virtually unchanged if the second pair are used instead.

The apparent Q values are frequency independent to
within about 4% over the two decades shown in Figure 2,
which covers periods ranging from the full duration of the
computation down to the period corresponding to a five-grid
S wavelength. The nearly constant Q values are biased
downward from the target value by a small amount, less than
4%. This is close to the accuracy achieved in the acoustic
case (D98), and if higher accuracy is required it should be
easy to achieve by optimizing the choice of the weights wi

and relaxation times si, which we have made no attempt
to do.

The weak heterogeneity caused by the coarsely repre-
sented relaxations produces a small amount of cross talk
among components, typically around 2 orders of magnitude
smaller in maximum amplitude than the main pulse. This
effect does not impair the stability of the computations nor
does it seem to have any significant practical consequences,
as is further verified in the half-space point source test in the
next section. We have done plane-wave tests for Q values
ranging from 20 to 300, and ratios Qp0/Qs0 ranging from 1
to 2, and the calculations are stable and accurate in all cases.

Half-space Point Source Test

Figure 3 shows the problem geometry for the uniform
half-space example. The source is a buried double couple,
equivalent to a point shear dislocation with left-lateral slip
in the x1 direction on a vertical plane normal to x2 axis (with
x3 positive down). The source is at (0 km, 0 km, 2 km). The
grid-cell spacing is 100 m, and the time step is 0.008 sec.
Grid boundaries (other than the free surface of the half
space) are at sufficient distance that they do not influence
the first 4 sec of the solution at distances within 10 km of
the source. This arrangement was chosen so that we can
assess the attenuation methodology without having to ac-
count for any added artifacts due to imperfection in the ab-
sorbing boundaries at the sides and bottom of the grid. The
P- and S-wavespeeds and density are 6 km/sec, 3.46 km/sec,
and 2700 kg/m3, respectively, and Qp0 and Qs0 are both 50.
The moment rate function ṁ of the dislocation source is a
Gaussian with spread S:

M H(t) 2 20 �0.5(t�4S) /Sṁ(t) � e , (24)
2pS	

(H is the Heaviside step function, and the offset 4S is present
in the Gaussian argument in order to make the discontinuity
at time t � 0 negligibly small). For the examples shown
below, the source moment M0 has been scaled to 1018 N m.



Memory-Efficient Simulation of Anelastic Wave Propagation 527

Figure 2. Plane wave test results for Qp and Qs

of 50. Estimates of Q were obtained from spectral
ratios of the velocity waveforms shown in the inset.
Timescale is normalized to the S-wave travel time
across one grid cell (b/dx is the ratio of S-wave speed
to cell dimension). Velocity is normalized to have a
unit maximum amplitude at the source location.

Figure 3. Problem geometry for the uniform half-
space numerical example. The source is a point shear
dislocation at a 2-km depth, with seismic moment of
1018 N m and the moment rate function given by
equation (24). Velocity is computed at the free-
surface point (6 km, 8 km, 0 km), which is at an
epicentral distance of 10 km.

We examine the computed velocity waveforms, at lo-
cation (6 km, 8 km, 0 km), for the Gaussian spread S �
0.045. This value of S is chosen because it is right at the
threshold at which the numerical solution in the perfectly
elastic case (Q � �) begins to show visible artifacts due to
numerical dispersion. This behavior of the infinite Q case is
shown in Figure 4, where the FD solution is compared with
a solution obtained by wavenumber integration (Apsel and
Luco, 1983). The point of Figure 4 is to verify that, in the

lossless case, this source function is sufficiently broadband
to exhibit the entire effective (i.e., artifact free) bandwidth
of the FD solution on this grid.

To assess the finite Q simulations, a reference solution
was again obtained using the wavenumber-integration
method of Apsel and Luco (1983). We modified the Apsel
and Luco method to include a causal attenuation with a con-
stant relaxation spectrum on (ln sm, ln sM). The modification
required replacing the shear modulus in their method with
the complex, frequency-dependent modulus l(x),

2 2 2 21 s � x s sM m M
l(x) � l 1 � lnu � 2 2 2 2pQ s � x s ss0 m m M

2i x(s � s )M m�1� tan , (25)2 �pQ 1 � x s ss0 m M

and making the analogous modification to the combination
j � 4l/3 (using Qp0 instead of Qs0). Equation (25) can be
derived from the equation (9) of D98 by setting the relaxa-
tion spectrum to the constant 1/ln(sM/sm) and carrying out
the integration over the interval (ln sm, ln sM). For both the
wavenumber-integration and FD solutions, we adjusted the
infinite-frequency moduli, lu and ju � 4lu/3, such that
the (frequency-dependent) P- and S-wave phase velocities
equal the target wavespeeds, � and b, respectively, at a ref-
erence frequency of 10 Hz.

Figure 5 shows the results for the anelastic solution with
Qp0 and Qs0 equal to 50. The FD solution is free of any
visible spurious oscillations and reproduces the wave-
number-integration solution with considerable precision.
This agreement is even better than in the infinite Q case,
since attenuation has eliminated the spurious high-frequency
oscillations without introducing any new numerical artifacts
(within the usable bandwidth). This example contains body
waves (a P wave, arriving at �1.7 sec, SV and SH arrivals
at �3.0 sec), a surface-diffracted phase (SP arriving at �2.2
sec) and a surface wave (the Rayleigh wave, arriving at �3.2
sec). Similar agreement is achieved for each of these wave
types. The good numerical results for the SP and Rayleigh
wave, especially, complement the plane-wave tests by con-
firming that the attenuation methodology has not visibly de-
graded the performance of the numerical free-surface bound-
ary condition.

To underscore the latter point, we present the elastic and
anelastic solutions for a different moment rate function in
Figure 6. The source is a twice-differentiated Gaussian (a
so-called Ricker wavelet), with the spread S set to 0.06 sec.
The resulting source has a peaked spectrum that emphasizes
the frequency band at which numerical dispersion has be-
come significant, while remaining acceptable for most prac-
tical applications (for reference, 0.2-sec period corresponds
to about seven grid cells per S wavelength). The figure shows
the radial velocity component over a time window contain-
ing the SV and Rayleigh phases. The addition of attenuation
via the coarse-grain representation clearly has not degraded
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Figure 4. Elastic (infinite Q) solution for the half-space problem with the Gaussian
source function. The FD solution (dashed curves) is compared with a reference solution
obtained by wavenumber integration (solid curves). The source spectrum was inten-
tionally expanded up to the threshold at which artifacts due to numerical dispersion
become visible. This effect is most apparent in the transverse component following
the arrival at about 3 sec of the SH phase. The early part of the transverse component
has been expanded by a factor of 50 to make visible the small near-field phases that
precede SH.

the performance of the FD method, whether that performance
is assessed by qualitative visual agreement with the analyt-
ical solution or by quantitative measures such as relative
errors of peak amplitudes or phase delays.

Discussion

The foregoing examples confirm the expectation ex-
pressed in D98 that the coarse-grain method would work
approximately as well for anelastic-wave propagation as for
the acoustic-wave case. The plane-wave numerical examples
achieve accurate simulation of frequency-independent Q
over approximately two decades of frequency using only one
memory variable per stress component. The good perfor-
mance for plane waves appears to carry over to evanescent

waves as well, as indicated by the accurate reproduction of
all phases, including the Rayleigh wave, in the half-space
test. With adjustment of the s values and w values it should
be possible to achieve comparable accuracy for other relax-
ation models such as the power law Q(x).

The tests in this article and in D98 were for a FD
method, and it would be useful also to develop and test pseu-
dospectral, finite-element, and spectral-element implemen-
tations. We anticipate that the method will perform similarly
in any structured-grid scheme, including staggered-grid Fou-
rier pseudospectral implementation. Since the coarse struc-
ture of the memory variables generates artifacts at wave-
lengths shorter than four grid spacings, the suitability of
coarse-graining for anelastic pseudospectral calculations
hinges upon whether those artifacts entail a loss of usable
bandwidth. Our own experience (Xu et al., 1999) has been
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Figure 5. Anelastic solution (Qs � Qp � 50) for the half-space problem with Gaus-
sian source function. The FD solution (dashed curves) is compared with a reference
solution obtained by wavenumber integration (solid curves). The source is identical to
that used for the infinite Q solution shown in the previous figure.

that the free-surface boundary conditions limit the short
wavelength accuracy of pseudospectral calculations, and
wavelengths of four grids may lie outside the usable band-
width for some applications, making the coarse-grain
scheme attractive. In any event, implementing coarse-grain
relaxations in pseudospectral codes will be straightforward,
following a recipe virtually identical to the FD case presented
in this article.

The implementation on a structured grid, as in our FD
example, is especially simple, because the relaxation time
index at a stress node can be evaluated quickly just from the
parities of the three lattice indices (i.e., equation 18). For
methods using unstructured meshes, such as most finite-
element and spectral-element methods, some alternative ap-
proach will have to be devised to associate each stress node
with its corresponding relaxation time index. It is also con-
ceivable that mesh irregularity will degrade performance of
the coarse-grain approach in finite-element and spectral-
element codes, and this possibility will have to be addressed

through numerical testing. These two issues, index associa-
tion and mesh irregularity, are not likely to be fundamental
obstacles, and the coarse-graining method is likely to pro-
vide the same level of memory savings for the unstructured-
grid methods as it does for the FD method.

D98 noted that the relaxation times and weights can be
varied to optimize the accuracy with which the target Q(x)
is fit. Liu and Archuleta (1999) have successfully combined
the method of D98 with an optimization scheme for the s
values and w values based on simulated annealing. In case
of frequency-independent Q, the resulting optimized s val-
ues still roughly follow the logarithmic distribution used in
this article and in D98, but the extra degrees of freedom
provided by the w values lead to an improved fit to the target
Q. The approach of Liu and Archuleta (1999) may be useful
in constructing prescribed frequency-dependent Q(x) func-
tions.

Finally, we note that coarse representation of the ane-
lastic memory variables is by no means the only promising
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Figure 6. Elastic (infinite Q) and anelastic (Qs �
Qp � 50) solutions for the half-space problem, radial
component, with narrowband (Ricker) source func-
tion. The time window shown includes the SV and
Rayleigh phases.

approach to memory optimization. For example, Graves
(1996) achieves very large reduction factors in RAM re-
quirements for FD computation by relying on disk storage
for the field variables while maximizing the ratio of com-
putations to disk I/O. Moczo et al. (1999) use a lossy com-
pression scheme based on a discrete wavelet transform to
optimize RAM and disk storage requirements. Combining
the compression scheme with the memory optimization of
Graves and the memory variable economization of D98,
Moczo et al. (2000) in some cases achieve total (disk plus
RAM) storage reductions approaching or exceeding an order
of magnitude.

Conclusions

We have developed and tested an anelastic generaliza-
tion of the coarse-grain memory variables scheme proposed
by D98 for simulating realistic, broadband attenuation in 3D.
The scheme requires only one memory variable per stress
component per unit cell. We describe its implementation in
logically rectangular, structured-grid FD codes, and we
perform tests calculations for the particular case of a fourth-
order, staggered, velocity-stress code. For plane P- and
S-wave test cases, the scheme simulates frequency-indepen-
dent Q to within a 4% tolerance over a frequency band of
approximately two decades. Bias from the specified target
value of Q was also less than 4%. This accuracy is compa-
rable to that achieved by D98 for acoustic waves, and further

improvement, if required, can be achieved easily by opti-
mizing the weights and/or relaxation times. A test calcula-
tion for a uniform half-space confirms that the scheme also
performs well for elastic waves, such as the Rayleigh wave,
that are strongly influenced by the free-surface boundary
condition. The coarse-grain scheme may also be applicable
to numerical wave-propagation methods on unstructured
grids, including finite-element and spectral-element meth-
ods, though additional numerical testing will be required to
establish accuracy in the presence of grid irregularity.
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Appendix

We write versions of (11) and (12) for mean stress ,r̄
in terms of volumetric strain ekk and associated memory vari-
able , and do the same for deviatoric stresses in termsf̄ r�ij
of deviatoric strains and associated memory variables :e� f�ij ij

¯df dj¯s � f � w e (A1a)kkdt ju

df� dlij
s � f� � w e� (A1b)ij ijdt lu

¯r̄ � j [e � f] (A2a)u kk

r� � 2l [e� � f�]. (A2b)ij u ij ij

Noting that the (total) stress tensor components, rij, are equal
to , we define new variables nij:r� � r̄dij ij

¯n � 2l f� � j f. (A3)ij u ij u

Since s and w take the same values in (A1a) and (A1b),
respectively (as a consequence of our assumption that Qj

and Ql have identical frequency dependence), nij satisfies

dn 2ij �s � n � w 2dle � dj � dl e d (A4)ij ij kk ij� � � �3dt

and
2
�r � 2l e � j � l e � n . (A5)ij u ij u u kk ij� �3

Finally, we assume that s and w have been chosen to
simulate a relaxation spectrum constant on support interval
(ln sm, ln sM), as in D98, and write (A4) in terms of the Q
of the P and S waves at reference frequency x0, denoted Qp0

and Qs0. The latter are obtained from (13) by replacing the
modulus j by j � l (for Qp0) or by l (for Qs0). The results4�

3
are given by equations (15) to (17).
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