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Summary. Realistic anelastic attenuation laws are usually formulated as
convolution operators, but this representation is intractable for time-domain
synthetic seismogram methods such as the finite difference method. An
approach based on Padé approximants provides a convenient, accurate re-
formulation of general anelastic laws in differential form. The resulting
differential operators form a uniformly convergent sequence of increasing
order in the time derivative, and all are shown to be causal, stable and dissi-
pative, In the special case of frequency-independent 0, all required coef-
ficients for the operators are obtained in closed form in terms of Legendre
polynomials.

Low-order approximants are surprisingly accurate. Finite-difference im-
pulse responses for a plane wave in a constant-Q medium, calculated with the
fifth-order convergent, are virtually indistinguishable from the exact solution.
The formulation is easily generalized to non-scalar waves. Moreover, this
method provides a framework for incorporating amplitude-dependent
attenuation into numerical simulations.

1 Introduction

This paper describes an efficient scheme for incorporating general anelastic attenuation laws
into time-marching methods for computing theoretical seismograms. Time-marching refers
to those methods which compute seismic time histories by direct numerical integration,
in time, of the equations of motion. Examples of some time-marching methods widely
used in seismology are: (1) the finite difference method (e.g. Boore 1972), (2) the finite
element method (e.g. Smith 1975), (3) the Fourier, or pseudospectral, method (e.g. Kosloff
& Baysal 1982), in which spatial derivatives are computed by means of the fast Fourier
ransform instead of finite differences, and (4) the discrete wavenumber finite element

‘-""‘(DWFE) and related methods (Alekseev & Mikhailenko 1980; Olson, Orcutt & Frazier
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1984), in which horizontal dependence of the wavefield is Fourier—Bessel transformed
before derivatives with respect to the vertical coordinate are replaced by finite differences.
The class of time-marching methods excludes methods which construct theoretical time
histories by Fourier synthesis of steady-state solutions. The latter includes, for example,
the methods of reflectivity (e.g. Fuchs & Miiller 1971), modal synthesis (e.g. Swanger &
Boore 1978), and real-axis wavenumber integration (e.g. Apsel 1979). The approximate
approach described herein is not required for the Fourier synthesis methods, since com-
pletely general linear attenuation laws can be incorporated into frequency domain formu-
lations exactly, simply by making the elastic moduli complex functions of frequency.

In the time domain, on the other hand, the most general linear constitutive relation-

ship expresses the stress at time ¢ as a hereditary integral of the strain over all earlier time.
This formulation, while fully general, is completely useless for wave-propagation calcu-
lations. Immense storage and arithmetic requirements render the requisite numerical inte-
grations intractable. As a result, wave propegation calculations by time-marching methods
have generally been restricted to perfect elasticity and a few simple spring—dashpot models
such as the Voigt solid.

Seismic data suggest that the internal friction of rock, Q7!, is nearly independent of
period, at least over the more than three decades from about 1s to 1hr. This observation
requires that anelastic effects be characterized by a broad relaxation spectrum (Liu, Ander-
son & Kanamori 1976). The eleméntary spring—dashpot models are highly unrealistic in
this respect. Lack of generality in representing anelastic attenuation is therefore a signifi-
cant disadvantage of the existing time-marching methods relative to Fourier synthesis ~—"
methods, for seismic applications.

The approach adopted here is to transform the convolution integral relating stress to
strain history into a convergent sequence of constant-coefficient differential operators of
increasing order. This is accomplished using the method of Padé approximants. Partial
fraction expansion of the nth-order approximant then yields a first-order differential equa-
tion for each of » internal variables, which sum to form the macroscopic stress. These first-
order equations are easily approximated by finite differences for use in wave propagation
calculations. The internal variables must be stored, so the storage requirement for finite
difference calculations, for example, is n times the number of stress components (1 for
acoustic or SH-waves, 3 for 2-D plane strain, etc.) times the number of mesh points. In
practice, fairly low-order approximants have been found to give extremely accurate results
in wave-propagation calculations.

This particular approximation method appears to be very well suited to numerical calcu-
lations. In the most important special case, that of constant Q, the operator coefficients of
any order can be obtained in closed form in terms of the Legendre polynomials. Even in the
most general case, the coefficients can be automatically generated without recourse to curve-
fitting. Moreover, each differential operator is guaranteed to be causal, stable and dissipative,
and uniform convergence of the sequence is assured.

Finite difference calculations of plane-wave propagation in a constant Q medium verify
the stability and accuracy of the method. Using the fifth-order approximant, computed
waveforms for the constant Q medium are indistinguishable from an exact solution obtained
by Fourier synthesis.

The formulation is easily generalized to non-scalar waves. It provides a solution to a long-
standing problem in seismogram synthesis, with obvious applications to forward modelling
in both strong motion and exploration seismology. Moreover, this method provides a frame ‘
work for incorporating amplitude-dependent attenuation (e.g. Mavko 1979) into numerical ~~
simulations.

“



Padé approximants for attenuation 107
2 Background

The general linear, shift-invariant, isotropic stress—strain relationship can be resolved into
separate 1-D relations of the form

o(t) = f "M t') de(t'), )
0

where o is a stress and € a strain. The function M is the stress history corresponding to a unit
step function strain history. In terms of M, we can define the unrelaxed modulus, M, , the
relaxed modulus My, the relaxation of the modulus, 5M, and the normalized relaxation
function, ¢, by means of the following expressions:

M, =M(0), ()
Mg =M(), 3)
M= M, —Mg, 4)
and

M@)=Mg +5M (1), )

so that ¢(0)=1 and ¢(=°)=0. We will restrict attention to anelastic material response, which
requires Mz > 0.

In what follows, we assume that the relaxation function ¢ has the following representa-
tion:

o(H= Jm ®(ln 1) exp(—t/7) d(lq 7), 6)

with ® > 0. The non-negative distribution ®(In 7) is called the normalized relaxation spec-
trum. Nowick & Berry (1972) summarize the physical basis for representing ¢ in the form
6).

We apply the Laplace transform in s-multiplied form, i.e.
F@=s f 1) exp(—st) dr, @
0

to (5) and (6). With the change of variable p = 77, we obtain the following expression for the
operational modulus M, the Laplace transform of M:

H(s)= My—6M f : q)s(?pdp . ®)
The distribution fi)(p) is the relaxation spectrum defined by

é(p)=®(~n p). ©
Equation (1) transforms to

a(s) = M(s) €(s), (10)

which is the operational form of the stress—strain relationship.

Given a relaxation spectrum &, our objective is to construct stable, accurate approxi-
mations to (1) in differential form. This simply requires approximating M(s) by a rational
function M, (s), in which n denotes the degree of the denominator polynomial. Then, with
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the replacement of M by M,, and the substitution of d/dt for s, (10) becomes an nth-order
differential equation for o(#), which can be discretized and time stepped. However, it is
essential that the rational approximation M,, be of relatively low order, since storage and
arithmetical requirements will be proportional to n.

If M(s) were initially a rational function of s, with denominator polynomial of suf-
ficiently low order, obviously no approximation would be necessary. This is just the case
in which the given relaxation spectrum consists of a small number of delta functions. In this
case, each spectral line corresponds to a pole of the operational modulus M(s), and (8)
reduces to the partial fraction expansion of M.

In general, however, M(s) is not rational. For example, if ® is a non-zero and continuous
function of In 7 over any finite interval, it can be deduced from the form (8) that M(s)
has a branch cut on the negative real axis (e.g. Van der Pol & Bremmer 1964, pp. 77-78).
The approximation method presented in the next section can be viewed as a systematic
scheme for replacement of the branch cut for M(s) by a series of interlaced poles and zeros.
The method is notable for retaining high accuracy at wavefronts with relatively few poles,
n. Moreover, the resultant stress history converges everywhere (not just at wavefronts)
to the exact solution, as n increases.

As a practical matter, moreover, even if we initially have a pole-zero representation of
M(s), but with a large number of poles, .V, the approximation method replaces it by a
reduced pole-zero representation. In this case, the Nth-order approximant reproduces
AZ exactly; but for n <N, the poles of M, will not generally coincide with any of those of - S
M.

3 Padé approximants for the operational modulus

In this section we develop the method for approximating the operational modulus M by a
rational fraction M,,, given a relaxation spectrum &. Both M(s) and ¢(¢) can be expanded
in terms of the moments of the relaxation spectrum &. Examination of these expansions
motivates the use of an approximation for M which preserves the maximal number of low-
order relaxation moments. Then the theory of Padé approximants for Stieltjes series faci-
litates the construction of explicit expressions for M, in terms of ®, and the same theory
provides us with convergence and stability proofs. Direct numerical methods for generating
the approximants have been bypassed by using some classical results relating diagonals of the
Padé table to sequences of orthogonal polynomials. This connection to orthogonal poly-
nomials leads to a completely algebraic solution for the constant-Q operator, which is given
in the next section.

3.1 APPROXIMATION METHOD

As a preliminary step we rewrite (8) as:

M(s)= My —8Ms™! x(—s™"), ' 1
where we have introduced the new function
= &(p) dp
x@@)= f . 12)
[} 1 —Dpz

The function  is closely related to the Laplace-transform of relaxation function ¢:

x(=s)=s[1-6()]. (13)
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The reason for introducing x is that it is the generating function for the moments of ®:
under repeated differentiation of the integral, (12) becomes

x(z)= i cn 2", 14)
n=0

with,

en= j T é(p)de,  B(p)>0. 15)
o «

Equations (14) and (15) define a Stieltjes series, i.e. a power series with coefficients equal
to successive moments of a non-negative distribution (irrespective of whether the series
converges; e.g. Baker 1975, chapters 15—17). This fact will be exploited extensively in what
follows, enabling us to develop approximations to x which match the low-order relaxation
moments, yet converge even outside the radius of convergence of (14).

We also note that if (14) is substituted into (13), the resulting expression can be Laplace
inverted term by term to give the MacLaurin series of the relaxation function ¢(r) in terms
of the moments. The result is

o k+ 1
s(=1+ 3 EET (16)
k=1 (k+1)!
The important point for our purpose is that in so far as an approximation to x preserves the
moments of ®, it will preserve the MacLaurin series of ¢(z).

We now proceed to approximate the operational modulus by replacing x(z) with a
rational function A4,,(z)/Bn(z), where A,, and B, are polynomials of degree m and n,
respectively. Two considerations require mention at this point. First we must set the numerator
degree m equal to n— 1. This is required in order that the instantaneous elastic modulus
M, be preserved by the approximation and that the late-time response remain bounded.
Second, we note that in order to simulate accurately seismic amplitudes with a differential
operator of low order, it is desirable that the corresponding approximation to the relaxa-
tion function be highly accurate at early time, i.e. at wavefronts.

These considerations lead us to choose A, _; and B, so as to match the relaxation
moments ¢ up to the highest power possible for the given denominator degree n. We form
the approximation x,, given by

Ap_1(2)
Xn (2) = B.G) (17)
subject to the constraint
X(@) By(z) —An _1(2) = 0(2>"). (18)
If we add the normalization
B,(0)=1, (19)

and the stipulation that 4, _,; and B, have no common factors, then ¥,, is uniquely deter-
mined (Baker 1975, p. 8), and is, by definition, a special case of the Padé approximant to
x (the [n—1/n] Padé approximant, in the notation of Baker). Since x is a Stieltjes series, .
the existence of x,, is assured for all n (Baker & Graves-Morris 1981, p. 164). (This is strictly
true only when the support of the distribution & is an infinite set. If, on the other hand,
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& consists only of a string of NV delta functions, then x,, exists for n< N and xy=x.)
Through (18) the approximation preserves the first 2n relaxation moments (co to 3, — 1)
and therefore (by 16) the first 2n derivatives of the relaxation function ¢() at r=0". Asa
result, we will find that even very low-order Padé approximants give highly accurate results
in wave-propagation applications.

3.2 EXPLICIT EXPRESSIONS FOR THE APPROXIMANTS

Since X, is a Padé approximant to a Stieltjes series, we now have at our disposal a well-
developed theory for constructing M, for arbitrary n, as well as for assessing the
convergence of the sequence M,,. There are several purely numerical ways to proceed, but
the most fruitful approach for our purposes is via the relationship between the Padé approxi-
mants and orthogonal polynomials. This approach leads to a closed form expression for
M, in the most important special case for seismic applications; in the most general case,
this approach leads to a convenient, stable constructive algorithm.

We assume for simplicity that ® has a bounded interval of support [r3', 77'], with
72 > 71 > 0. Since & is non-negative, we can define a set of polynomials p,(x) orthonormal
with respect to ®, i.e.

-1

T a -
f , 2i(x) p () @ (x) dx =8, [, m=0,1,2,... (20) .~

T2

With the added condition that p,, is of degree m, and that its leading coefficient %, is real
and positive, the set is unique. (If ® consists solely of N delta functions, then p,, only exists
for m=0, 1. N—1, and is called a discrete orthogonal polynomial. The subsequent
development sti]l applies for n< N —1, with exact convergence for n=N, as stated earlier.)
Then ¥, is given by (e.g. Brezinski 1977)

z7 dn (z—l)
pn(z-l)

where g, (x) is the associated polynomial (of degree n — 1) given by

xn (@)= : | @1)

an ()= f pn (t) —Dn (x) CI)(t) dr. (22)

Using results summarized by Szegé (1939, p. 48) we readily obtain the partial fraction
expansion of x;,,,

(23)

Xn(2) = }E

where »;, i= 1 ...n are the zeros of p,,. The residues, ), are all positive, and are given by

=1 l—Vx

kn
kn—10n-1 @) p;t (Vi)-

Note that the right-hand side of (23) is also a Gaussian quadrature formula for (12), with o

respect to weighting by ®. B
Substituting x,, for x in (11) gives the desired rational approximation for M, denoted

24

>\i=
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by Mn >

M, ()= My—SM M (25)

which amounts to replacing ) by a string of positive delta functions located at the zeros
of p,. With M,, replacing M, (10) implies the stress—strain relationship

o(r) =M, [e(t) - ii &-(t)], (26)
=1

where ¢{;, i= 1, ... n, satisfy, respectively, the » first-order differential equations

dg(t)
dt

v 5’;(’)=>\i‘6ﬁM’ e®), i=1,...n @7

u

The §; can be viewed as internal variables which sum to give the macroscopic stress o (e.g.
Minster 1980).

3.3 PROPERTIES

Equations (26) and (27) give the desired differential approximation to equation (1).
Accuracy of the approximation at wavefronts was ensured by the method of construction.
Stability of equation (27) requires Re [v;] > 0, and this is guaranteed by the fact that the
zeros of orthogonal polynomials are always real and confined to the interval of orthogonality.
Furthermore, we can show that JW,, is always dissipative. To do so, it suffices to show that
sMy;* (s) is a positive real function (Brennan & Smylie 1981), i.e. Re [sM,;(s)] > O whenever
Re[s] > 0 (and that sM ' (s) is real when s is, which is obvious). Given that the residues N
are all positive, a straightforward calculation shows that the positive real property of sM~!(s)
follows if M,, (s) is itself positive real. But, Re [M,, (s)], for Re [s] > 0, is bounded below by

Re[M,(s)] > M, —6M i >\—’, Re[s] > 0. (28)
=1V

The sum is the Gaussian quadrature formula for

fﬁ‘ L
75 14

(the right hand side follows from the normalization ¢(0)=1). The error formula for
Gaussian quadrature is

T;l . n 2”)
f 1) b dr— 3 s =L ® (29)
7 i1 (n) k2

where £ is some point in the interval of integration (e.g. Hildebrand 1974, p. 388). Apply-
ing this formula to 1/p (whose even derivatives are positive), and noting again that the
A;s are all positive, we see that the sum in (28) is a positive number less than 1. Therefore,

we have
Re[M,, (s)] > M, —8M=Mg > 0, Re[s] >0, (30)

which proves that M, is dissipative for any choice of n.
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Finally, we can show that the sequence{M,} generates a convergent sequence of
approximants, {Q,' (w)}, to the internal friction Q™' (w). We use the definition of Q™
advocated by O’Connell & Budiansky (1978),

o Im [M(iw)]
O H(w)= ————, for real w. (€2))
Re [M(iw)]
Since we have already shown that the real part of M,, (iw) cannot vanish for real w (nor can
the real part of M(iw)), we have only to show that

lim M, (iw) = M(iw).

n—> oo

This result follows from a convergence theorem for the Padé approximants to Stieltjes
series (e.g. Baker 1970, p. 11), a sufficient ‘¢ondition in the present case being 7; > 0. Thus,

even though we constructed M,, to be particularly accurate at wavefronts, we have actually
generated a convergent sequence, in the sense that we have ensured

lim Qz'(w)=07(w) (32)
n—>o
for any frequency w.

In the Appendix we also establish the even stronger result that the sequence of dif-
ferential operators defined by (26) and (27) converged in the uniform operator norm to the
integral operator defined by (1). This result can be expressed in the following manner:
by a suitable choice of n, independent of the strain history €, we can make the maximum
error in the stress history arbitrarily small in any finite time interval.

34 COMPUTATION OF THE POLES AND RESIDUES

For constant Q (uniform relaxation spectrum), the poles and zeros can be obtained in closed
form in terms of tabulated quantities, as shown in the next section. For the most general
distribution &, however, the orthogonal polynomials have to be represented numerically
and their roots computed. A convenient and stable numerical representation of a set of
orthogonal polynomials is in terms of its recursion coefficients, which are easily computed,
either directly from ® or from its moments. Gautschi (1982) describes several methods.
Root extraction is also extremely simple, since all roots are real, distinct, and located on
(731, 711), and roots of successive polynomials of the set interlace.

4 Numerical example
4.1 SPECIALIZATION TO CONSTANT-Q ABSORPTION BAND

As an example of the general method developed in the previous section, we treat the import-
ant special case in which Q! is nearly constant over a frequency band. This is the most
important case for seismic applications, and admits a closed-form solution for the poles and
residues in terms of tabulated quantities.

Following Liu et al. (1976), we introduce a relaxation spectrum & (In ) which is constant
in the interval [In 7y, In 7,] . This corresponds to constant ®,

(33)

- -1
0, p<Ttorp>1il,

Cﬁ(p)={ [In(ra /717, T3 <p<7yt
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in which we have taken account of the normalization ¢(0)= 1. For a broad relaxation spec-
trum with 73" <w < 77", Q7' is nearly frequency independent. If we also assume SM/M,, <
In(7,/7,), this nearly constant Q™ is given approximately by

o

~— In —
2 Mu Tl

-1
0 .

The change of variables
2 (it + 1Y)
(i - 13")

maps the distribution (33) on to the interval [—1, 1]. The Legendre polynomials P, are
orthogonal with respect to unit weight on [—1, 1]. Therefore, the poles »; and residues
A; required for our nth-order approximant are given in terms of the zeros of the Legendre
polynomials, /;, by

=Y [ - )+t + )]
and (from equation 24)

Knhup_1 (1 —12")
2kn_yIn(ra/1y) Py y U) Py ()
_ (it —13")
nIn(ra/m) Py g () Py ()’

Here k, is the leading coefficient of P,, and h, is its quadratic integral on [—1, 1].
Then, for this special case, (27) can be written as

dgi(t)
dt

)‘l=

i=1,...n.

- ,
+u; §i(8) = (_ wy Qol) (), i=1,...n, (34)
n

where
w=Ya [ (it — 731 + (7t + 73] (35)
_ 2

P 1 ()P ()

The I; and w; are, respectively, the abscissas and weights for n-point Gauss—Legendre quad-
rature, and their numerical values are extensively tabulated (e.g. Abramowitz & Stegun
1964, p.916).

(36)

Wi

42 NUMERICAL SOLUTION

A suitable finite difference scheme for time-stepping each of the » equations (34), with time
step At, is the recursion

yi=ayj_ 1 tbx;
>~ where
yi=8:(jAr)
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x;=e(jAt) + e(jAt —At)
2— Ay
a= ———
2+ Aty
At it -3t

2
b= w; Qo'
2+Aty; T 1 Qo

This scheme can be readily incorporated into a finite difference method for the scalar
wave equation. As a test, we apply the method to model propagation of an impulsive plane
wave in a homogeneous medium. The width of the constant-Q absorption band is given in
our test problem by 7,/7; = 10%, and Q, is equal to 20. The initial pulse Uy(¢) in this test
calculation was given the form

sin? (n¢/107) t/r, < 10

o (9= {o t/r1 > 10.

The time step was Ar=0.1 7, giving an initial pulse width of 100 At. This relatively broad,
smooth input pulse is intended to minimize the usual numerical dispersion associated with
the spatial discretization of the problem, which is unrelated to the differential approxima-
tion of the attenuation operator being tested here.

R (o]
1of o {a) EXACT ]
osl SOLUTION ]
! €0 ]
06 . ]
2 140 b
04 €T, ]
oz} /L J
H -
oot ]
10 ,'
" N (b) NUMERICAL i
E osF o 4 SOLUTION
) n 1) 4
1 " ]
> osf ol i ]
8 o i ]
Z oa4f 110 i \ ]
3 AR i\ ]
S ! \
G i Iy 1
3 TR AN .
° 00 [ i ~ 4 ~— i
o
>

-20 0 26 40 éO 8.0 100 i20 140 i60 180 200
Dimensionless Time t/T

04 (c) COMPARISON AT ]
F r/cT, =140 ]
03 k
| Analyticat 4
o2t —-=-~ Numerical 1

olf

0.0

120 130 140 150 160 170 180 190 200
Dimensionless Time t/T

Figure 1. Comparison of: (a) exact solution and (b) approximate numerical solution to the constant-Q

~—

test problem. Part (c) of the figure overlays the two solutions at the largest range, r =140 c7, (v, is the.w./

minimum relaxation time and c¢ is the wavespeed associated with the unrelaxed modulus), which is the
worst case. The two solutions are virtually indistinguishable.
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Fig. 1 shows the numerical results for plane wave propagation, obtained with the S-pole
approximant. This solution is compared with an exact solution for the absorption-band
model obtained by Fourier synthesis. The initial pulse is shown, together with the propa-
gated pulse at three different ranges. The worst case is at the largest range, and the exact
and numerical solutions for this range are superimposed on an expanded scale in Fig. 1(c).
Even in this case, the finite difference and exact solutions are nearly indistinguishable.
Those differences which are visible, such as the small precursor in the finite difference
solution, are attributable to the spatial differencing of the wave equation, rather than to
the approximation of the attenuation operator.

5 Discussion

The preceding development solves a long-standing problem in the time-domain computation
of synthetic seismograms, that of representing realistic attenuation laws accurately in a form
suitable for time stepping. The numerical example exhibits the extraordinary accuracy of the
method in the case of a constant-Q attenuation law. Generalization of the 1-D treatment of
this paper to higher dimensional, isotropic media is immediate, since the tensor stress—strain
relationship of a linear, isotropic material can always be reduced to a set of separate scalar
stress—strain relations of the form considered here.

Potential applications of the method include 2-D forward modelling of reflection seismo-
" grams and full wave acoustic logs. In both cases, time-marching methods are routinely
used to simulate acoustic and elastic waves as they propagate over distances of several
tens of wavelengths (e.g. Kelly e al. 1976, Kosloff & Baysal 1982 and Chang 1983).
Anelastic losses may have pronounced effects on pulse amplitudes and dispersion over
paths of this length. Indeed, a major objective of full wave acoustic logging is to deduce
the anelastic properties of the path from the observed attenuation of microseismogram
phases.

Another potential application is in earthquake strong motion modelling, where the
DWFE method (Olson et al. 1984) has received much use. Anelastic effects can be expected
to play a significant role at source—receiver ranges of tens of kilometres, especially if low-
velocity, low Q surface layers are present.

A further application of the method is for modelling the near-source transition from non-
linear to linear attenuation. The laboratory results summarized by Mavko (1979) indicate
that stress wave attenuation in many rock types is amplitude-dependent for strains above
about 107°. A corollary proposed by Trulio (1978) and analysed by Minster & Day (1984)
is that non-linear attenuation in the near-field of underground nuclear explosions persists
to ranges several times greater than the regime of large-scale rock failure (the so-called elastic
radius). The importance of the transition from non-linear, amplitude-dependent attenuation
to linear, anelastic attenuation is that the wavefield at the transition radius defines the
equivalent forces, or seismic coupling, of the explosion. Numerical modelling of this pheno-
menon calls for a combined time domain treatment of non-linear and anelastic attenuation
laws.

6 Conclusion

The following remarks summarize our conclusions from this study:

(1) The Padé approximant method permits realistic anelastic attenuation laws to be
conveniently and accurately represented in a form suitable for time stepping.

(2) All approximants lead to Q operators which are causal, stable, and dissipative, and
which form uniformly convergent sequences.
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(3) The case of constant Q is especially convenient, in that all required coefficients have
been derived in closed form.

(4) The method is apt to find applications in several areas of seismic forward modelling
including synthesis of reflection seismograms, full wave acoustic logs, and earthquake strong
motion, as well as in theoretical studies of non-linear source coupling.
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Appendix

To facilitate discussion of convergence, it will be useful to view equation (1) as defining
a linear operator on elements e(#) of the function space L. [0, T]. The space L. is the
Banach space of essentially bounded strain histories on the finite time interval [0, T], with
the norm given by the essential supremum, lle |=esssup {le(¢)|:0< < T}. With the
restrictions on M(f) given by equations (5) and (6), equation (1) defines a bounded linear
operator  from L., into itself (boundedness of A follows readily from the fact that ¢(¢)
is absolutely integrable on [0, 7]). With the introduction of the uniform operator norm,
_ defined for the arbitrary linear operator .2 by

||3’||=sup{—" Ze : e#O}, (A1)
liell
the set of all bounded linear operators from L., into itself also constitutes a Banach space.
Completeness of this space of operators is a consequence of the completeness of L ...

The linear differential operator of order n defined by (26) and (27) will be denoted by
Myn. My is bounded, since the roots v; all lie in the interior of the interval [r3}, r1!]
and 7, > 0. We show that .#, converges uniformly to ., i.e. in the sense of the uniform
operator norm (Al).

From equations (1), (5) and the continuity of ¢ (), it follows that

lim T| o) —dp (D)1 dt=0 (A2)

n—+e«Jo
is a sufficient condition for

lim | A — %, 1=0.
n—>oo

In (A2), ¢, is the relaxation-rate function associated with My, obtained by Laplace inver-
sion of equation (25) and use of equation (5). The integrand is given by

160 -9 01= [ exp(p) b dp - 3, N exp(-m). (a3)

TS i=1

But in (A3) the summation term is a Gaussian quadrature formula for the integral term.
Therefore, the right hand side is bounded by the Guassian quadrature error formula (equa-
tion 29), and we have

. .o texp(—tiry)
|¢(t)_¢n(t)|< W (A4)
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The coefficient k,, is the leading coefficient of the orthogonal polynomial Pp- Using the
extremal property of orthonormal polynomials (Szegé 1939, p. 39), and noting that &(p) =
0 for p < 73", we conclude that k2R 73" * !, Then (A4) becomes

2n
R (i), (43)

proving that {¢,} conveiges uniformly to ¢ on any finite interval, therefore also establish-
ing (A2). \

16()—dn(2) | <



