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RMS Response of a One-Dimensional Half-space to SH 

by Steven M. Day 

Abstract We examine the extent to which the response of a perfectly elastic half- 
space to an SH-wave incident from below can be characterized when knowledge 
about the elastic structure is limited to the near surface. Elastic properties are modeled 
as piecewise continuous functions of the depth coordinate. It is found that the site 
amplification function can be determined with a frequency resolution that depends 
inversely on the depth to which the elastic structure is known. Specifically, certain 
spectral averages of the site amplification function, concentrated over bandwidth Af, 
depend only on the elastic structure down to a two-way travel-time depth of 1/Af.  
These spectral averages are entirely independent of the elastic properties at greater 
depth. Equivalently, when the incident motion has a bandlimited white power spec- 
trum of bandwidth Af, the site amplification of the root mean square (rms) ground 
motion depends only on the elastic structure down to a two-way travel-time depth 
of 1/Af. When the bandwidth is sufficiently large, the following corollary applies: 
the rms surface ground motion equals the rms incident motion multiplied by 
2]Ib/Io,  where I 0 and I b are shear impedances at the ground surface and basement 
depth, respectively. This result provides justification for a procedure conventionally 
used to correct stochastic estimates of earthquake ground motion to account for local 
site effects. The analysis also clarifies the limitations of that conventional procedure. 

The results define specific site-response parameters that can be computed from 
knowledge of shallow structure alone and may thereby contribute to improved un- 
derstanding of the physical basis for, and limitations of, site classification schemes 
that are based on average S-wave velocity at shallow depth. While the analytical 
results are rigorous only for infinite Q, numerical experiments indicate that similar 
results apply to models with finite, frequency-independent Q. The practical utility of 
the results is likely to be limited primarily by the degree of lateral heterogeneity 
present near sites of interest and the degree to which the sites respond nonlinearly 
to incident ground motion. 

Introduction 

Local site effects have an enormous influence on the 
intensity and character of earthquake ground motion. This 
has been recognized for many years and has been well il- 
lustrated in studies of several recent earthquakes (e.g., Singh 
et al., 1988; Hough et al., 1990; Borcherdt and Gtassmoyer, 
1992). A number of empirical and theoretical tools have 
been developed for assessing those site effects (see, e.g., 
Aki, 1988). The most advanced of these tools require de- 
tailed site characterization. For example, given a complete 
description of the seismic velocity structure in the three- 
dimensional volume surrounding a site, present computa- 
tional methods (e.g., finite-difference and finite-element 
methods) are, in principle, capable of computing the site 
response to a given input ground motion. This approach is 
computationally very intensive by current standards, though 
it may be worthwhile undertaking for a few specific sites 

containing critical facilities, especially where there is already 
extensive knowledge of the local subsurface geology and 
prospective seismic sources. However, incompleteness of 
our geologic knowledge of the site ordinarily renders such 
computations impractical. 

Moreover, applications such as the seismic zonation of 
a metropolitan area require that site-effect estimates be made 
with dense geographical coverage. In such applications, the 
scope of the problem is such that it may be infeasible to 
acquire geological information beyond a description of the 
surface geology and geotechnical characterization of the up- 
per few tens of meters of the subsurface. 

In light of this need for estimates of ground motion 
based on highly simplified geologic information, it is appro- 
priate to reconsider highly simplified analytical models for 
site response. We focus on the case of horizontal stratifica- 
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tion. Matrix methods for computing the response of hori- 
zontally layered viscoelastic models (e.g., Kennett, 1983) 
have been in use for more than 4 decades. One-dimensional 
models of this type have been subjected to rather detailed 
experimental tests (Cramer, 1995), and the sensitivity of 
site-response calculations to uncertainties in the model pa- 
rameters has been studied numerically (Field and Jacob, 
1993). 

This article addresses the response of perfectly elastic, 
horizontally stratified surficial layering excited by a plane 
SH-wave incident from an underlying uniform half-space. 
Specifically, the shear modulus/z(z) and density p(z) are as- 
sumed to be arbitrary piecewise continuous functions of 
depth z. To simplify the discussion, we will refer to the un- 
derlying uniform half-space as "basement," and we will as- 
sume in all cases that the basement shear impedance is 
known. Within the context of this idealization, we consider 
what information about site response can be determined 
when the only additional information available is the elastic 
structure at shallow depth, i.e., whenct(z) and p(z) are known 
only for z less than some depth h. 

We construct spectral averages of the site amplification 
(relative to basement), with averaging bandwidth Af, which 
depend only on the elastic structure down to a two-way 
travel-time depth of 1/Af. Thus, from near-surface structure 
alone, even with complete ignorance of structure at greater 
depth, we can make some precise statements about the spec- 
tral response of the site. Then we define the rms amplifica- 
tion, GAy 1/2, as the rms response at the site when the incident 
motion is a stationary stochastic process with unit rms am- 
plitude and a bandlimited white power spectrum of width 
Af This quantity is of particular significance because band- 
limited white noise (BLWN) has become a standard analyt- 
ical model for the prediction of earthquake ground acceler- 
ation (e.g., Hanks and McGuire, 1981; Boore, 1983). In the 
BLWN model, the expected value of peak ground accelera- 
tion is directly proportional to rms acceleration and therefore 
to ~.1/2. The rms amplification is also shown to depend only 
on the elastic structure down to a two-way travel-time depth 
of 1/kf. 

A special case of the rms result is of interest. Even if 
the only site information available is the shear impedance of 
the surface material, the rms amplification can still be de- 
termined, provided the input bandwidth is sufficiently large. 
In that case, G~f m is given by 

G2Af 1/2 = 2 ~ o, 

where Io and Ib are shear impedances at the ground surface 
and basement depth, respectively. For transient instead of 
stationary input, the square of the above expression gives 
the site amplification of the total signal energy. 

The Site Amplification Function 

We consider SH motion of a perfectly elastic half-space. 
The half-space has a one-dimensional structure; i.e., shear 
modulus and density are piecewise continuous, real func- 
tions/*(z) and p(z), respectively, of the depth coordinate z 
only, with z => 0. The shear velocity ,/It/p is denoted by fl(z). 
The structure is terminated above by a free surface (at z = 
0) and merges below into a uniform half-space; that is, there 
is a Zb (the "basement depth") such that the functions fl(z) 
and p(z) are equal to constants fib and Pb, respectively, for 
all z > Zb. The quantity of interest is the surface displacement 
excited by a plane SH-wave incident from below, with hor- 
izontal slowness p, and the restriction p -  1 > supfl(z). The 
latter stipulation insures subcritical incidence; i.e., the hori- 
zontal phase velocity is bounded below by the maximum 
value of the shear velocity. We define the site impulse re- 
sponse g(t) as the surface displacement induced by an inci- 
dent wave of the form 3(t - px + tlZ), where t/ = (/?-2 _ 
pZ)m. That is, denoting the induced displacement field by 
ua(z, t - px), the impulse response is 

g(O-=ut(O, O. ( l )  

To simplify the notation, we do not write out explicitly the 
dependence on slowness p. The corresponding site transfer 
function G03 is the Fourier transform of g(t). More gener- 
ally, where the incident wave time series is a stationary sto- 
chastic process u~nc, with power spectrum S.ino, and the cor- 
responding surface motion time series is u0, with power 
spectrum S.o, IG(])I 2 can be interpreted as the spectral am- 
plification function of the site: 

IG(f) l  2 -  Su°Or') ( 2 )  
Suinc0re) " 

After Fourier transformation on time, the equation of 
motion for the impulse response field, for slowness p, is 

°(.</_-0 (2~)92/xq2Ua - ~z Oz ] (3) 

The transformed displacement U~(z, f)  also satisfies the free 
surface condition at z = 0, 

oga 
- - = 0 ,  z = 0 .  (4) /.t Oz 

Since the half-space is uniform, beneath basement depth, we 
can express Ua as the sum of the incident field and a down- 
going reflected field Uff: 

Ua = e i2'~fqz + U~(Zb, f )e  -i2'~fuz, Z >-- Zb. (5) 

We now derive a reciprocal relationship between the 
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foregoing "site response" and the "site radiation" u~(z,t - 
px), i.e., the excitation of the half-space by an applied surface 
traction To(t - px). The transformed displacement field sat- 
isfies the equation of motion, 

0 
(6) 

together with the radiation condition, which implies 

TT {~ ¢~ --i2~frlz 
U r ( Z  , f )  = UrVCb, j ]e. , z = zb .  (7) 

The boundary condition is 

OUr 
- - = - r o q ) ,  z = 0 ,  (8) /2 0Z 

where To(f) is the Fourier transform of %(0. Multiplying (3) 
by Ur and (6) by U6, subtracting, and integrating by parts 
from 0 to Zb yields 

Our zb OU8 zb. 
Uo/2 - ~ z  0 = Ur /2  0Z 0 (9) 

Then, inserting the conditions (4), (5), (7), and (8) into (9), 
and using definition (1), we obtain the following expression 
for the site transfer function in terms of the site radiation: 

2zciflbUr(Zb, f) 
G(D = 2 (10) 

Toq) ' 

where Ib is the basement impedance, 

i b  = p b f l 2 ( f l ~ 2  __ p2)1/2. (11) 

Taking the squared absolute value of both sides of (10) 
yields 

(2ny32IbUr(Zb, JgU*r (Zb, r'5 
IG(f)l 2 = 4I b J '. 

Toff)T*(f) 
(12) 

Equation 12 expresses the site amplification function (for 
slowness p) in terms of solutions to the reciprocal radiation 
problem (for the same slowness p). For the special case of 
uniform, constant-travel-time layers, a result equivalent to 
(12) has been derived using layer matrix methods (Scher- 
baum, 1987), by analogy with a corresponding relationship 
for acoustic waves (Claerbout, 1976). 

Spectral Averages and RMS Amplification 

We use (12) to show that certain spectral averages of 
the site amplification function depend only on shallow elas- 
tic structure. Multiplying (12) by ToT~o and integrating, we 
obtain 

o c  

~ IG(f)12T0(f)T*oo (f) df 

o o  

= 4Ib ~ (2zcf)21bUr(zb, f)U*(zb, f )  df. 
- -  o z  

(13) 

The right-hand integral in (13) is the energy (per unit area) 
radiated into the half-space z > Zb, which must equal the 
work done (per unit area) on the free surface by traction To(t). 
The energy equality is insured by our requirement p-1 > 

supfl(z). Thus (13) can be written as 

c~ c~  

~lG(f )12ro( f )7~o( f )d f=4Ib f ar(O,t)To(t)dt. (14) 
- - o z  - - o z  

In (14), we can view ToT~0 as playing the role of a spectral 
averaging kernel. This equation thus provides an expression 
for spectral averages of IGI 2 which only involves the tran- 
sient power input at the free surface. Therefore, we can iso- 
late the effects of the shallow part of the structure by time 
windowing the power input through our specification of the 
surface traction r0(t). 

Altemately setting r0(t) to b(t)cos(2rcfot ) and 
b(t)sin(2zcfot) in (14) and adding, we obtain 

f ]G(f)[ V(f  - fo) df  
- - c o  

4Ib [ y(t)v(t) COS(2Xfot) dt, (15) 
0 

where v(t) is the autocorrelation of b(t), Vff) is its spectrum, 
and y(t - px) is the surface response to impulsive surface 
traction 6(t - px); i.e., 

t 

Ur(O, t) = I y(t')To(t -- t') dt'. (16) 
J 

0 

The Fourier transform Yq) of y(t) can be thought of as the 
free-surface admittance function (for slowness p). 

Finally, let the autocorrelation v(t) equal w(Aft), where 
the normalized autocorrelation w(t) has the properties 

w(t) = 0 fo r l t l>  1, 

w(0) = 1, 
1 

f w(t) dt = 1. 
- 1  

(17) 

That is, the power input is modulated by a function b(t), 
which has an autocorrelation w(Aft) with support interval 

A-1  [ - f , Af -1] and a spectrum with unit area and equivalent 
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width (area divided by zero-frequency ordinate) Af. Equa- 
tion (15) then becomes 

o z  

' J" w(:: :°/ --U: _= t A: : 
llAf 

= 4Ib f y(t)w(Aft) cos(2~f0t) dt, 
0 

(18) 

where W(f) is the Fourier transform of w(t). The left-hand 
side of (18) is just a weighted average of the site amplifi- 
cation spectrum, defined with respect to the averaging kernel 
W, centered atfo, with equivalent width proportional to Af. 
Because of the windowing supplied by w, the right-hand side 
of (18) depends only on y(t) for t < 1/Af, and we have 
therefore reduced the upper integration limit of (15) accord- 
ingly. Then y(t), and therefore (18), depends only on the 
earth structure on the interval 0 <-<_ z <- h(1/Af), where h(s) 
is the depth corresponding to two-way vertical travel time s, 

h 

= 2 1 ~(z) dz. (19) s ( h )  
. /  

0 

We denote the spectral averages in (18) by GZAAf(fo): 

0%) -= ~ IGO012 df. (20) 

Equation (18) provides an exact expression for spectral av- 
erages of the site amplification when the averages are defined 
with respect to any spectral averaging kernel W derived from 
an autocorrelation function w with support interval [ - 1, 1]. 
Since G-~--ay(.fo) in (18) depends only on elastic properties 
above h(l/AjO, we have proved that all models that have the 
same elastic properties above this level will share the same 
spectral averages of form (20). Equation (18) applies to any 
value of the central frequency fo. Since Af is the equivalent 
width of the averaging kernel, it is appropriate to call Gzaaf 
the spectral average of the site amplification over bandwidth 
Af. 

An equivalent statement of result (18) is the following: 
if the input ground motion uinc is a stationary process with 
power spectral shape W, central frequencyfo, and bandwidth 
Af, i.e. 

S"~"cQ)= \ AI } 

then the rms incident motion is amplified by factor GzAf 1/2 
to give rms surface motion: 

RMS Amplification = ~/E[u(nc(t)~] - . (22) 

This result follows from the equality between the zero-lag 
autocorrelation and the integral of the corresponding power 
spectrum. Naturally, such rms amplification factors can be 
defined with respect to input acceleration or velocity as well, 
just by specifying input acceleration or velocity in place of 
input displacement in (21). Each such rms amplification fac- 
tor, for input with a given bandwidth Af and central fre- 
quency f0, is the same for all models that share the same 
elastic properties above level h(1/Af). A similar formulation 
applies to transient input with energy spectrum W; in that 
case, the total spectral energy in the ground motion will be 
amplified by G-~Ay. 

This rms viewpoint may prove useful because of the 
extensive use that is made of spectral models (e.g., the Brnne 
(1970) spectral model) to predict rms ground acceleration 
from earthquakes, following Hanks and McGuire (1981). 
Earthquake ground motion is transient rather than stationary, 
but for large earthquakes, the duration of the incident tran- 
sient will usually be large compared with the duration of the 
site impulse response. In that case, the rms of the incident 
acceleration will be amplified by approximately G-Af J/2 to 
give the rms of the surface acceleration. Furthermore, the 
expected value of peak ground acceleration, as estimated via 
random vibration theory, is approximately proportional to 
the rms acceleration, with relatively weak dependence on 
duration and spectral shape (see, e.g., Boore, 1983; Udwadia 
and Trifunac, 1974). Therefore, the rms amplification is ex- 
pected to be a good approximation to the site amplification 
factor for peak acceleration. 

The above results are exact only for perfect elasticity, 
i.e., infinite Q. Anderson et aL (1996) have used numerical 
experiments to extend the analysis to models with finite, 
frequency-independent Q. They find that the rms amplifi- 
cation is still approximately independent of shear velocity 
beneath the near-surface region, in the manner predicted by 
the infinite Q analysis given above, provided variations in 
the model preserve a fixed value for the loss exponent t*. 
Anderson et al. show that the rms amplification may be quite 
sensitive to that t* value, however. In this context, t* is de- 
fined as the travel-time weighted integral of Q-  i taken over 
the entire shear-wave ray path. 

The applicability of the foregoing results will also be 
limited in the presence of strong lateral heterogeneity. In 
alluvial basin deposits, for example, horizontal interference 
patterns will be excited in addition to the vertical interfer- 
ence patterns present in one-dimensional models (see, e.g., 
Wong and Trifunac, 1974). In such cases, rms amplification 
estimates based on any one-dimensional framework can at 
best be considered first-order approximations. 

Numerical  Example  

A specification for w(t) that meets the bounded support 
criterion in (17) is the triangular window w(t) = 1 - Itl. In 
this case, the averaging kernel, denoted by Ws, is the squared 
sinc function 
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W s ( f )  = sin2(/rf)/(/~f) 2. (23) 

An example of  spectral averaging over this kernel is shown 
in Figure 1. Figure la  shows two Earth models that coincide 
down to a depth of  50 m, corresponding to a two-way travel 
time of  0.45 sec. Beneath that depth, the models diverge (but 
share a common basement impedance). The broken curves 
in Figure lb show the corresponding transfer function am- 
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Figure 1. (a) Two models of S velocity versus 
depth. The S-velocity profiles of the two models co- 
incide down to a depth of 50 m, corresponding to a 
two-way travel time of 0.45 sec. In both cases, model 
density is 1800 kg/m 3 above 50 m and 2200 kg/m 3 
below 50 m. (b) Broken curves show the transfer func- 
tion amplitude IGI for each of the two models, assum- 
ing vertically incident SH. The solid curve is the rms 
amplification, for input bandwidth, Af, equal to 2.5 
Hz. The rms amplification is plotted as a function of 
central frequency of the input, fo, for input spectral 
shape W s (i.e., the sinc squared kernel). As predicted 
by equation (18), the rms amplification is identical for 
the two models. 

plitudes IGI, for the case of  vertical incidence. The solid 
curve in Figure lb is ~a f  1/2 for an averaging bandwidth of  
2.5 Hz, plotted as a function of  central frequency f0- As re- 
quired by equation (18), ~ m is identical for the two models. 

In practice, we find that the bounded support criterion 
can usually be relaxed somewhat without significantly com- 
promising the independence of  spectral averages on structure 
beneath h(1/Af). Figure 2 compares rms averages of  the two 
models in Figure la, as a function of  central frequency, for 
a 2.5-Hz bandwidth. In this case, we have already verified 
that the averaging kernel W s gives identical results for the 
two models. Also shown in Figure 2 are the rms results for 
both Gaussian and Lorentzian averaging kernels, Wa and 
wL, 

W~(f) = e -=f2, (24) 

1 
WL(f) - , ~ a "  (25) 

1 + ~ f  ) 

Averages over the Gaussian kernel show only negligible dif- 
ferences between the models, even though this kernel does 
not strictly correspond to an autocorrelation of  bounded sup- 
port. Likewise, averages over the Lorentzian kemel show 
only small differences between the two models. 
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Figure 2. Comparison of rms amplification for the 
two models in Figure la. The rms amplification is 
plotted versus central frequency f0, for an input band- 
width of 2.5 Hz. The comparison is made for the three 
averaging kernels W s, W c, and W L. Since W s con- 
forms to the bounded support criterion (17), it yields 
identical averages for the two models. Both the Gaus- 
sian and Lorentzian kernels, although not strictly in 
conformance with (17), show only small difference in 
rms amplification for the two models. Thus, in prac- 
tice, the bounded support criterion may be relaxed 
somewhat without significantly compromising the in- 
dependence of spectral averages on deep structure. 



368 S.M. Day 

Applications 

RMS Response, Known Surface Layer. A consequence of 
Equation (18) is that even if we know only the shear impe- 
dance of a thin surficial layer, we can determine the rms 
amplification exactly, provided the spectrum of the incident 
wave is sufficiently broad. The shear velocity and impedance 
of a surface layer of depth H 0 will be denoted by to and Io, 
respectively, where I 0 = p0/~o(f lo  2 - p2)1/2. We take 

1 

Af ~ 2Ho(flo 2 _ p2)1/2, (26) 

in which case no reflected signal influences the surface ad- 
mittance function y(t) during the period 1/Af. Thus, we may 
use the uniform half-space admittance for y(t): 

y(t)w(Afi) = I o - 1 6 ( t ) ,  (27) 

so the spectral average (18) becomes 

= 4 ~ ( 2 8 )  
z0' 

and the rms amplification is 

(/b) 1/2 
-~ay aa = 2 \Io1 " (29) 

The factor of 2 in the rms amplification (29) is just the flee- 
surface amplification of a uniform half-space. Interestingly, 
the remaining factor in (29) is identical to the plane wave 
amplification factor under conditions where the WKB ap- 
proximation applies. That is, (29) coincides with the site 
transfer function one would obtain in the limit when the 
subsurface velocity profile is continuous and the frequency 
is restricted such that wavelength is everywhere short com- 
pared with the reciprocal of the gradient of the log of veloc- 
ity. Thus, we have shown that the smooth-model WKB ap- 
proximation to the site transfer function is also an exact 
expression for the rms amplification, irrespective of the ac- 
tual complexity of the stratification and irrespective of the 
central frequency. The only limitations are that there be a 
uniform layer of finite thickness H o present at the surface, 
the input bandwidth be at least Af _-__ l/2Ho(flo 2 - p 2 ) 1 / 2 ,  

and the incidence angle be small enough that the restriction 
p-1  > supfl(z) on the slowness is honored. 

Standard spectral models for earthquake acceleration 
are approximately flat between a comer frequency fc and a 
characteristic high-frequency limitfm~, (Bmne, 1970; Hanks, 
1982). Hence, an extensively used earthquake acceleration 
model is BLWN, with passband [fc,fm=]" The foregoing anal- 
ysis justifies the procedure (e.g., Boore, 1983) of using the 
WKB amplification factor to account for site amplification 
of the rms acceleration estimate obtained from these BLWN 
models. In the case of vertical incidence, for example, the 

procedure is justified provided the impedance I o character- 
izes a surface layer of thickness fl/2(fma x - f c )  or greater. If 
the BLWN specification is relaxed slightly, so as to accom- 
modate a time-limited autocorrelation, as in the first of cri- 
teria (17), then the procedure is exact. 

Spectral Averages, Two Known Surface Layers. Next we 
consider the case in which shear velocity and impedance are 
known for two uniform surficial layers. To simplify the pre- 
sentation, we treat the case of vertical incidence, since mod- 
ifications required for p > 0 are obvious. The thickness H 0 
of the upper layer is known, and the thickness of the under- 
lying layer is known to equal or exceed H1,  beneath which 
the elastic properties are unknown. Layer velocities and im- 
pedances are denoted by the same subscripts as are the layer 
thicknesses. 

For input bandwidth equal to or greater than fl/(2Ho), of 
course, the spectral average and rms results are identical to 
the single-layer case, as given by (28) and (29). However, 
knowing the properties of the second layer, we can now 
construct spectral averages for narrower input bandwidth as 
well. Bandwidth is now limited by the two-way travel time 
to depth Ho + Hi, 

1 (  tot1 I 
A f  >- ~ \Boil 1 q- HlflO ]. 

(30) 

We can evaluate the spectral averages using (18), with the 
admittance y(t) for the actual model replaced by that of a 
single layer over a uniform half-space of impedance 11: 

y(t) = Iol[6(t) + 2r~(t - v) + 2Pa(t - 2 r ) . . . ] ,  (31) 

where r is the reflection coefficient at the bottom of the layer 
and z is the two-way travel time through the layer, 

Io - /1 2 H o  
- - - ,  r = . ( 3 2 )  

r Io + la t0 

Performing the cosine transform in (18) then gives 

GG.(f0) = 4/b f l - r 2  ( f ~ )  
11o _o~ 1 + r 2 -- -2rcos'(4~Hoflflo) W df, 

(33) 

independent of the model structure beneath Ho + H~, so 
long as Af conforms with (30). 

RMS Response to BLWN, Two Known Surface Layers. 
Equation (33) can be applied to estimate the rms response 
to white noise with upper frequency limitfm~x, in the presence 
of two known surface layers. To represent BLWN with low- 
frequency cutoff 0 and upper cutofffmax, we set the center 
frequency fo equal to zero and the spectral half-width Af/2 
equal tOfmax for the computation of GZay 1/2. It then proves con- 
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venient to construct a reduced rms amplification function R, 

R(f~) = I 1 -  1 11 G 2 2~m,x(0)-- 1 . (34) 

The reduced rms amplification function is useful because it 
depends on fm,x only through the dimensionless ratio f~ = 
nofmax[flo, is only weakly dependent on the impedance ratio 
11/10 , and is independent of the remainder of the model as 
long as fmax exceeds 0.25flOfll/(Hofll + Hlf lo) ,  as stipulated 
by (30). Figure 3 shows R(f~), as obtained from (33) using 
the kernel Ws, for various values of the impedance ratio 
11/1 o. Apart from oscillations near ~ = 0.1 (artifacts of the 
sidelobes of the kernel function), R(f~) shows little depen- 
dence on 11/10 and for most practical purposes can probably 
be adequately approximated by a straight line of slope 4 
through the origin, truncated at f~ = 0.25. For all f~ above 
0.25, (26) is satisfied, and therefore R(f~) has unit value, as 
required by the single-layer result (29). 

A convenient approximation can be derived by evalu- 
ating (33) using the Lorentzian kernel, in which case a closed 
form solution is obtained for G-AAf(f0), though strict indepen- 
dence on the model structure beneath H 0 + H1 is sacrificed. 
The result is 

Ib[ 1 - r 2 e  - sn°afj~° ] 

G~f (fo) ~ 4 ~o 1 - 2re -4n°af/p° cos(4~HoAf/flo ) + r2e -8n°Afq~° " 

(35) 

The integration of (33) leading to (35) is exact, but approx- 
imate equality is indicated in (35) to emphasize that the re- 
sult is now only approximately independent of structure 
beneath Ho + H1. The corresponding approximation for 
R(~) is 

} (36) 

This closed-form expression has the added convenience of 
having negligible dependence on the impedance ratios, as 
shown in Figure 3. 

The result that R is nearly independent of I1/I  o implies 
that the rms response in this case, ~ 1 / 2 ,  is a weighted 
sum of (I0)- 1/2 and (11)- ~/2. Approximating R by the straight 
line of slope 4, for example, we obtain the approximation 

~ 1 / 2 ~  2 ] ~  a + (1 - a) (37) 
2fmax k ) ~00 ' 

where the weighing factor a equals the ratio of fmax to the 
lowest resonance frequency of the top layer (or 1, if this 
ratio exceeds 1); i.e., 
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Figure 3. The reduced rms response to BLWN with 
upper cutoff frequency fmax, in the presence of two 
surface layers with impedance contrast  Ii[I O. The re- 
duced response is related to the rms amplification 
through equation (34). It depends Onfmax only through 
the dimensionless ratio f~ = H o fmax/flo and is inde- 
pendent of the remainder of the model beneath a two- 
way travel-time depth of 1/(2fmax). As can be seen in 
the figure, the reduced rms response is only weakly 
dependent on the impedance ratio of the layers (al- 
though the full rms response is strongly dependent on 
the impedance ratio). Also plotted is the reduced rms 
response for the Lorentzian kernel, which, however, 
is only approximately independent of the deep portion 
of the model. 

a = min(4fmaxHo/flo, 1). (38) 

The interpretation of (37) and (38) is that the rms amplifi- 
cation in this case assumes the same form as it did in the 
single-layer case, (29), but with (Io)-1/2 replaced by an av- 
erage of (I0)- 1/2 and (11)- 1/2, travel-time-weighted, down to 
a one-way travel time depth of 1/4fmax, i.e., 1/4 of the cutoff 
period of the input spectrum. This result may provide some 
theoretical foundation for proposed site classification 
schemes that are based on average S-wave velocity at shal- 
low depth, in which the average typically is taken over the 
uppermost 30 m (Boore et  al., 1993). The result may also 
provide some guidance on the use of travel-time-weighted 
average shear velocity as a predictor variable in regression 
analysis of strong motion, as in Boore et  al. (1994). A com- 
plete analysis of these questions would have to take finite Q 
into account, however. 

Summary  

We have examined the extent to which the response to 
S H  waves of a perfectly elastic, one-dimensional half-space 
can be characterized from partial information about its elas- 



370 S.M. Day 

tic structure. It has been shown that spectral averages of 
bandwidth Af can be constructed that depend only on the 
elastic structure down to a two-way travel-time depth of 1/Af. 
Equivalently, when the incident wave has a bandlimited 
white power spectrum of bandwidth Af, the site amplifica- 
tion of the rms ground motion depends only on the elastic 
structure down to a two-way travel-time depth of 1/Af. A 
corollary is that, provided the incident wave has sufficiently 
large bandwidth (as stipulated by equation 26), the rms in- 
cident ground motion will be amplified by twice the square 
root of the ratio (basement impedance - surface impe- 
dance). 

To construct exact spectral averages of the site ampli- 
fication function when the near-surface structure is known 
to some two-way travel-time depth 1/Af, model elastic prop- 
erties can be assigned freely at depths greater than 1/Af, 
letting them assume any values convenient for computation. 
Then standard methods can be used to compute the site- 
response function for that specific structure, and the spectral 
averages of bandwidth Af will be exact, irrespective of the 
actual deep structure. This approach was used to develop a 
relatively simple expression for the rms amplification in the 
case in which the elastic properties of two surficial layers 
are known. That expression was in turn used to generate 
numerical results for the rms amplification of white noise 
with upper cutoff frequency fmax" The latter results can be 
expressed in a reduced form that seems to be nearly inde- 
pendent of the impedance ratio of the two surficial layers. 
As a consequence, the rms response can be well approxi- 
mated by a weighted sum of the inverse square roots of the 
layer impedances, (Io) - 1/2 and (la)- 1/2. 

While the analytical results are rigorous only for infinite 
Q, numerical experiments indicate that similar results apply 
in an approximate sense to models with finite, frequency- 
independent Q (Anderson et al., 1996). In that case, how- 
ever, the Q structure throughout the model must be consid- 
ered, through its effect on the loss exponent t*. 

The foregoing analysis, despite being built on a quite 
idealized theoretical framework, may offer some insights 
useful in microzonation studies, which by their nature must 
rely on rather minimal geological and geotechnical charac- 
terizations of the region of interest. In particular, the results 
may contribute to improved understanding of the physical 
basis for, and limitations of, site-classification schemes that 
are based on average S-wave velocity at shallow depth. The 
practical utility of the results will probably be limited pri- 
marily by the degree of lateral heterogeneity present near a 
site of interest and the degree to which the site responds 
nonlinearly to the incident ground motion. 
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