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Efficient Simulation of Constant Q Using Coarse-Grained 

Memory Variables 

by Steven M. Day 

Abstract Improvements in computing speed have progressively increased the us- 
able bandwidth of seismic wave-field simulations computed with time-stepped nu- 
merical schemes (e.g., finite difference, finite element, pseudospectral). As compu- 
tational bandwidth increases, anelastic losses become increasingly significant for 
some important applications such as earthquake ground-motion modeling, whole 
earth seismogram simulation, and exploration seismic profile modeling, and these 
losses need to be included in the simulations. As bandwidth increases, however, the 
memory variables necessary to incorporate realistic anelastic losses account for an 
increasing proportion of total computational storage requirements, a consequence of 
the broad relaxation spectrum of typical earth materials. To reduce these storage 
requirements, we introduce a new method in which the memory variables are coarse 
grained, that is, redistributed in such a way that only a single relaxation time is 
represented at each node point (and therefore a single memory variable per stress 
component is required). Guided by a perturbation analysis, we effect this redistri- 
bution in such a way that spatial variability of this single relaxation time simulates 
the full relaxation spectrum. Such coarse graining reduces memory-variable storage 
requirements by a factor of 8 for 3D problems or a factor of 4 for 2D problems. 

In fourth-order finite-difference computations for the 3D acoustic-wave equation, 
the method simulates frequency-independent Q within a 3% tolerance over 2 decades 
in frequency, and it is highly accurate and free of artifacts over the entire usable 
bandwidth of the underlying finite-difference scheme. These results should also hold 
for the elastodynamic equations. The method is readily generalized to approximate 
specific frequency-dependent Q models such as power laws or to further reduce 
memory requirements. In its present implementation, the main limitation of the 
method is that it generates artifacts at wavelengths equal to 4 grid cell dimensions 
and shorter, which may, in some limited circumstances, overlap the usable bandwidth 
of very high-order finite-difference and/or pseudospectral schemes. 

InVoduction 

As computing has become progressively cheaper, it has 
become possible to use discrete numerical methods such as 
the finite-difference and finite-element methods to synthe- 
size seismic wave fields over spatial domains that are rela- 
tively large compared with the minimum numerically re- 
solvable wavelength. When a seismic pulse propagates a 
distance many times its dominant wavelength, anelastic at- 
tenuation cannot generally be ignored. Even three-dimen- 
sional elastodynamic problems can now be solved over do- 
mains sufficiently large that attenuation should not be 
neglected, and the problem of modeling attenuation effi- 
ciently and accurately will become increasingly important as 
computational capabilities advance. Accurate treatment of 
anelastic attenuation has already become a priority in some 
important practical applications in three dimensions, includ- 

ing, for example, the modeling of earthquake strong ground 
motion in sedimentary basins (e.g., Frankel and Vidale, 
1992; Frankel, 1993; Graves, 1993; Yomogida and Etgen, 
1993; Olsen et  al., 1995a), synthesis of the elastic response 
of whole earth models (e.g., Yoon and McMechan, 1995; 
Igel and Weber, 1995), and the simulation of seismic reflec- 
tion profiles (e.g., Carcione et  al., 1992). Applications such 
as these now frequently entail three-dimensional computa- 
tions over domains with dimensions roughly two orders of 
magnitude larger than the minimum wavelength (e.g., Olsen 
et  al., 1995b). 

The most general anelastic law represents the stress at 
(x, t) as a convolution integral over the complete strain his- 
tory at x, a form of the stress-strain relation that is not trac- 
table for numerical calculations, because it imposes enor- 
mous storage and computational requirements. Day and 
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Minster (1984) developed a framework for incorporating 
anelastic attenuation laws into time-stepped numerical meth- 
ods such as the finite-difference method by approximating 
them using internal, or "memory,"  variables. This approach 
can be viewed in the time domain as the replacement of the 
convolution operator by a low-order differential operator. 
Alternatively, it can be viewed in the Laplace transform do- 
main as the approximation of an algebraic transfer function 
by a pole-zero representation. Each pole then corresponds 
to a memory variable that evolves according to a first-order 
differential equation analogous to that governing a standard 
linear solid. The latter can be time stepped to compute the 
evolution of the memory variables along with the other field 
variables such as velocity and stress. This framework has 
been refined and improved by a number of investigators, 
who have used a variety of methods to determine efficient 
pole-zero representations of the stress-strain relationship 
(e.g., Emmerich and Korn, 1987; Carcione et al., 1988, 
Witte and Richards, 1990; Krebs and Quiroga-Goode, 1994; 
Blanch et al., 1995). 

While the memory variable framework is effective, it 
does impose stringent demands for computer memory. To 
approximate an anelastic quality factor (Q) that is approxi- 
mately constant over a specified frequency band requires 2 
to 3 memory variables per decade of bandwidth per stress 
component per computational unit cell, even under the most 
highly optimized memory variable formulations (e.g., Rob- 
ertsson et al., 1994; Blanch et al., 1995). This requirement 
becomes particularly onerous in three dimensions, where 
there are six independent stress components per computa- 
tional unit cell. The typical 3D elastic (nonattenuative) stag- 
gered grid finite-difference method requires nine words of 
storage per unit cell for the field variables, that is, the ve- 
locity and stress components. Anelastic computations in 
three dimensions, in contrast, would require the addition of 
roughly 30 memory variables per unit cell to achieve a near- 
constant Q over a bandwidth of 2 decades. Thus, the total 
memory requirement would be roughly quadrupled. It is 
therefore not surprising that, for example, none of the 3D 
simulations of basin response to earthquakes done to date 
have included anelastic memory variables. 

We present a method that approximates constant Q to 
very high accuracy, over 2 to 3 decades of frequency, with 
a single memory variable per stress component per unit cell. 
The method is most efficient in higher dimensions. In two 
dimensions, the method achieves a fourfold reduction in 
memory variable storage requirements (to achieve Q con- 
stant over a given bandwidth), compared with the most 
efficient current methods. In three dimensions, the method 
provides an eightfold reduction. The operations count asso- 
ciated with the memory variable evolution is reduced in the 
same proportions. 

The method is conceptually simple and easily imple- 
mented. Given an N-pole description of the anelastic relax- 
ation function, we distribute the N memory variables over 
the stress node points of the computational grid, one per 

stress component per unit cell, in such a way that spatial 
averages of the relaxation function remain well approxi- 
mated. This procedure can be viewed as replacement of the 
microscopic relaxation structure of the medium with a 
coarse-grained equivalent. 

The following section reviews the operational form of 
the stress-strain relationship of linear anelasticity, its rep- 
resentation in terms of a relaxation spectrum, and its ap- 
proximation via first-order differential equations governing 
a set of memory variables. The subsequent section analyzes 
the effect of coarse graining the memory variables. The anal- 
ysis is approximate and is intended to demonstrate the plau- 
sibility of the technique and to indicate how the evolutionary 
equations should be weighted in the coarse-grained medium 
to achieve the desired Q value. We then test the method with 
a numerical application to constant Q simulation in three 
dimensions. Finally, we discuss possible extensions, as well 
as limitations, of the method. 

Anelasticity and Memory  Variables 

This section reviews the reduction of the 1D, anelastic 
stress-strain relationship to differential form, resulting in its 
(approximate) expression in terms of N internal, or "mem- 
ory," variables. In higher dimensions, there will be one such 
relationship for each independent stress component. Adher- 
ing to the notation of Day and Minster (1984), we write the 
1D stress-strain relation as a convolution integral over the 
step response M: 

t 

~r(t) = f M(t  - t')de(t'), (1) 
o 

where ~ is the stress and e is the strain. We apply the Laplace 
transform in s-multiplied form, that is, 

c ~  

f (s)  = s f f(t)e-~tdt,  (2) 
o 

to transform the stress-strain relation to its operational form: 

a(s) = M(s)g(s). (3) 

Note that the operational modulus M has the same dimen- 
sions as the step response M. The unrelaxed modulus M u, 
the relaxed modulus MR, the relaxation of the modulus 6/14, 
and the normalized relaxation function ~b are given by 

M~ = M(O) = ~ ' (~ ) ,  (4)  

MR = M ( ~ )  = ~ ( 0 ) ,  (5) 
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5 M = M  u - -MR,  

and 

M(t) = MR + dM~b(t). 

(6) which are specified by the 2N values of zi and 2 i. The latter 
are, respectively, the poles and residues of the operational 
modulus (Day and Minster, 1984). Each stress component, 
at each computational node, thus has associated with it the 

(7) N memory variables (i. The resulting low-loss approxima- 
tion to Q-1 is then 

We represent the relaxation function in terms of a relaxation 
spectrum O, 

(8) 

o~ 

~(t) = f e-t/~O(ln z)d(ln "c), 

resulting in the following integral expression for the opera- 
tional modulus: 

- -  d( ln z),  (9 )  

o~ 

M(s) = M, - dM [ 
@(ln "E)  

3 s z +  1 

which is equivalent to equation (8) of Day and Minster 
(1984). We use (9) and the definition of Q-a (as a function 
of angular frequency co), 

Im[M(iog)] 
Q-a (co) = Re[M(i~o)]' (10) 

to get, in the low loss approximation (Q-1 << 1), 

dM f cgz qb(ln "c)d(ln z). ( 11 )  Q-1 (co) ~ ~ co2z 2 + 1 

To reformulate (9) in differential form, we approximate 
the integral in (9) by a numerical quadrature, that is, a sum 
over N discrete relaxation times % 

o~ 
N 

f ~(ln ~) d(ln v) ~ ~] 2i 
sr +------1 i= 1 svi + 1' (12) 

- - o z  

where the 2, are the quadrature weights. Next, we substitute 
the approximation into (3) and invert the Laplace transform, 
obtaining 

a(t) = Mu [e(t) - ~ (i(t)]. (13) 
i = 1  

The (~, i = 1 . . . . .  N, are then internal, or memory, variables 
that evolve, respectively, according to the N first-order dif- 
ferential equations, 

d(i(t) 6M 
zi ~- + (i(t)  = 2 ; ~ e ( t ) ,  (14) 

5M ~ ,  2icoz; 
Q-1 (co) ~ ~ ~=1 co2~ + 1" (15) 

The natural criterion on which to judge the approxi- 
mation (12) is the degree to which the corresponding ap- 
proximation (15) to Q-1(co) matches the exact value (11). 
Most seismic applications entail approximating a Q-1(co) 
that is nearly constant over a broad frequency range. To 
accomplish this, Day and Minster (1984) transformed the 
integration variable in (9) to z-  1 and applied Gaussian quad- 
rature to derive analytical expressions for the poles and res- 
idues z; and 2; (and showed that this is equivalent to a Pad6 
approximant of the operational modulus). Subsequent in- 
vestigators have made substantial improvements by using 
numerical optimization to determine the z; and )~i, usually 
leading to roughly uniform distribution of the poles over 
ln(z) (e.g., Emmerich and Korn, 1987). For practical pur- 
poses, about 1 pole per octave is sufficient (Robertsson et 
al., 1994; Blanch et al., 1995) to approximate a frequency- 
independent Q function. 

Coarse Graining of  Memory  Variables 

Outline of the Method 

Our objective is to reduce the number of memory vari- 
ables to at most 1 per stress component per node, without 
sacrificing accuracy in representing Q(~o). We do so by in- 
troducing a single, spatially variable, relaxation time r(x), 
together with a weighting function w(x), in place of the spec- 
trum of relaxation times in (8). Then, in place of (13), we 
write 

a(x, t) = Mu [e(x, t) - ((x, t)], (16) 

where ( satisfies 

,(x) d¢ (x, t) - -  + ( (x ,  t) = w ( x ) t i M  dt ~ e(x, t). (17) 

We will show by analysis and numerical examples that this 
method can be made highly successful when the relaxation 
time function r(x) and weight function w(x) satisfy two con- 
ditions. First, z(x) and w(x) should be constructed so that 
their spatial distributions approximate the target relaxation 
spectrum, in the sense described in the next paragraph. Sec- 
ond, the scale length of their spatial variability should be 
limited to a few times the computational cell dimension, as 
shown by the perturbation analysis in the next section. 
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Note that (I)(lnr) in equation (8) is non-negative and has 
unit area. We can thus think of (l)(lnz) as a probability den- 
sity function, in which case the integral in (9) defining the 
operational modulus would be the expected value of (sz + 
1)-~ when lnv is sampled from the distribution (I). It is nat- 
ural to specify z(x) such that it is analogously distributed, in 
the following sense. Choose v(x) to be a measurable function 
on domain X, and define the set A by 

A = {x:  lnr(x) < a}, (18) 

where a is a real number. We introduce a measure v, such 
that the measure of a subset E of X is defined by 

v(E) = f w(x)dV, (19) 
E 

where w(x) is a Lebesgue-measurable, non-negative function 
having unit mean value on domain X. This means that 

v(X) = re(X), (20) 

where m is the Lebesgue measure of X (i.e., the volume of 
the domain of interest). Then we would specify r(x) such 
that the measure of A, v(A), satisfies 

a 

v(A ) _ f 
v(X) 

- -  o z  

qb(ln z)d(ln z), (21) 

for all real a. In other words, given a w(x) satisfying (20), 
we specify z(x) such that, if spatial points were sampled 
randomly, with probability weighted by w(x), the resulting 
lnz samples would have distribution qb. In practice, of 
course, we will only need to specify w and z at a discrete 
set of computational nodes. 

There are actually two distinct scales of spatial variation 
implicit in equation (17). The microscale (subwavelength) 
variation that we have just discussed, and that is designed to 
simulate the relaxation spectrum, is indicated explicitly by 
the notation in (17). Equation (17), however, does not ex- 
plicitly note the spatial variation of the factor dM/M,, though 
it too may vary spatially. This factor, however, scales the 
macroscopic Q, and its variation will usually have a scale 
length larger than that of v and w. 

We will refer to the conventional description of anelas- 
ticity, as given by equation (9), as the "relaxation-spectrum" 
representation. We will call the method based on a hetero- 
geneous relaxation time, as given by equations (16) and (17), 
the "coarse-grain" representation, in accordance with the 
physical analogy described below. 

Physical Analog 

Some motivation for this approach and terminology 
may be found in the physical origin of the relaxation spectra 

of earth materials. The characteristic attenuative behavior of 
rock results from the fact that rock is a heterogeneous ag- 
gregate. Relaxation mechanisms corresponding to a broad 
range of scale lengths and activation energies are present on 
the microscopic level (see, e.g., Minster, 1980). When the 
material is deformed over wavelengths large compared to 
the scale of the heterogeneities, these relaxation mechanisms 
are activated concurrently, giving rise to a broad spectrum 
of relaxation times. Conventionally, these relaxations are 
subsumed into a constitutive equation describing the mean 
behavior of the aggregate. Our method, in a sense, reverses 
this synthesis. We revert to the more fundamental, hetero- 
geneous description of the relaxations, albeit in an artificial, 
coarser-grained aggregate, with grain size equal to the com- 
putational unit cell. In this coarse aggregate, each compu- 
tational unit cell has only a single relaxation time. 

In discrete time-stepped numerical wave propagation 
computations (e.g., finite difference, finite element, pseudo- 
spectral), the minimum wavelength that can be computed 
accurately necessarily exceeds several times the cell size of 
the grid. Thus, it is plausible that we can coarse grain the 
medium in such a way that its attenuative properties will be 
preserved for all wavelengths of computational interest. The 
following analysis of the coarse-grain representation by 
means of perturbation theory suggests that this is indeed the 
case. 

Analysis of the Method 

In the coarse-grain representation of the medium, the 
effective attenuation can no longer be regarded as a purely 
local process with properties derivable from constitutive 
equations alone. To understand the nature of the approxi- 
mation, it is necessary to introduce the elastodynamic equa- 
tions into the analysis. We begin with the well-known anal- 
ysis, via perturbation theory, of anelastic attenuation in terms 
of an eigenfunction expansion of the elastodynamic field. 
We simplify the analysis, without sacrificing any useful in- 
sights, by restricting consideration to wave fields in a 
bounded volume (and by neglecting issues raised by eigen- 
frequency degeneracy). 

In a finite volume V with homogeneous boundary con- 
ditions, all solutions to the elastodynamic equations (without 
anelastic losses) can be written as linear combinations of 
U n (x)e i~°"t, /t/ = 1, 2 . . . . .  where un is the (normalized) ei- 
genfunction belonging to the eigenvalue co ] of the operator 
H ° given by 

H ° (u) = p-1 (COpqup, q),j. (22) 

In (22), u(x)e i~°t is the displacement field, p(x) the density, 
and C°(x) the elastic tensor. The eigenvalues are positive 
and the eigenvectors are orthogonal under the inner product 
defined by 

(f, g) = ~f(x) - g*(x)p(x)dV. (23) 
u 
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The introduction of weak, anelastic attenuation has the 
effect of adding a small additional, frequency-dependent 
term H' to H °. The new operator H is then 

H = H ° + H', (24) 

where 

H;(u) = /0- 1 (~bpqUp,  q),j" (25) 

Each component of C' has the form of the second term on 
the right-hand side of (9), evaluated at s = ice. The resulting 

2 perturbation to the eigenvalue ce~ can be estimated from per- 
turbation theory. The first-order correction fice~ to the eigen- 
value is 

c$ce 2 = (n'(un),Un) , (26) 

where u~ is the normalized, unperturbed eigenfunction of H °. 
The temporal Q-1 (Aki and Richards, 1980) of the mode, 
Q~- 1, can be expressed in terms of &G, to first order in the 
components of C', as 

Q- 1 = 2ce~- a Im(&G), (27) 

= co~ -2 Im(H'(un),u.). 

To simplify the subsequent discussion, we now spe- 
cialize to the case of an isotropic medium, though this as- 
sumption is not essential to the analysis. To begin with, we 
consider the relaxation-spectrum representation of the me- 
dium. We take a normalized relaxation spectrum ~ that is 
independent of position x (though this assumption is not 
essential either). Then we can find H' from (9), replacing M 
and ~M by their bulk and shear modulus equivalents: 

H; (u) = _ p -  ~ (&ekkr~j 

, ) qb(ln z) 
+ 2¢$]'lgij)'J t + icer 

--ca 

- -  d( ln  z),  ( 2 8 )  

where e is the infinitesimal strain tensor and e' its deviatoric 
part, and ~c and/z denote, respectively, bulk and shear mod- 
uli. Then, substituting (28) in (27), and applying the diver- 
gence theorem and the boundary conditions, we obtain 

Qn -1 (On 2 I Doo,,(-c)iffP(ln-c)d (ln T ) f [(6~u¢ ) * IEug(n)jj~(n)k k 

-- c~ V 

+ ~ 2/~uGS;~j~ dr, 

where e~ and e" are strain tensors associated with the eigen- 
vector u,,, and Dco(r) is defined by 

"/76O 
Do,(z) = 1 + T2(.02" (30) 

Recalling our reinterpretation of ~(lnr) as a probability 
density function, we can interpret the first integral in (29) as 
the expected value of D~o,(z). Denoting this expected value 
by (D~o), and also introducing En~ and E,/~ to denote, re- 
spectively, the bulk and shear strain energy densities of 
mode n, we can write (29) in the form 

Q~-I = co~-2f (2~f_KE~(D%) 
Ku 

V 

+ 4 dkt En~ (Do~,)) dV. (31) 

Now we are ready to introduce the coarse-grain repre- 
sentation, as given by equations (16) to (21). Therefore, we 
drop the integral over the relaxation spectrum, that is, (Do),), 
in our representation of H', and instead allow the relaxation 
time z to be a function of position, z(x), as described earlier. 
The result is that (Do),) in (31) is replaced by w(x)D~o~ [r(x)]. 
We denote by Qn the resulting approximation to the temporal 
Q of mode n. Then, Q,~- l is 

O~ ~ = ce~2 ~ (2a-~-KEn,~Do,~[z(x)] 
Ku 

V 

+ 4 a/~ &~D~o.[~(x)]) w(x)dV. 
/z, 

(32) 

We can assess the coarse-grain representation by eval- 
uating the accuracy of (32) as an approximation to (31), as 
the latter is the relaxation-spectrum representation of the ei- 
genfunction attenuation. The comparison is more informa- 
tive with the further simplification that &c/G and dp//z u are 
spatially uniform. From its method of construction, we know 
that the volume average of w(x)Do~,,[r(x)] is also equal to the 
expected value (Do,,) (see equations 18 to 21). We write En~ 
and F~  for the corresponding volume averages of En,~ and 
En/,, and (31) simplifies to 

(C~KEn~ + ~E~) (Do~ , ) .  (33) Onl = 2cen2V ~uu if--7 

The corresponding expression for attenuation of the eigen- 
function in the coarse-grain representation is 

On1 = 20922 -~u E~ (x)D~.[r(x)]w(x)dV 
V 

l /zu V 

/z, 
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The C~ and C~, in (34) are just the spatial correlations of 
w(x)Do), [r(x)] with the bulk and shear strain energy densi- 
ties, respectively: 

c M  - -  [ [E.M(x) 
V 

- EnM] {w(x)D,o, [z(x)] - wD,o .} dV, 

where M refers to either K or # and wD,o, is the volume 
average of w(x)Do~, [fix)]. We have used the equality be- 
tween wD~, and (D~,) in deriving (34) and (35). Equation 
35 states that the error introduced by the coarse-grain rep- 
resentation, relative to the relaxation-spectrum representa- 
tion, is proportional to the degree of spatial correlation be- 
tween the modal strain energy density and the function 
w(x)D,o,['c(x)]. 

We should be able to minimize the correlation of 
w(x)D~o,[r(x)] with all modes of practical interest by making 
fix) and w(x) periodic in space, with wavelength short com- 
pared with the minimum wavelength at which the numerical 
wave propagation computation (e.g., finite difference, etc.) 
is considered accurate. We assess this strategy by examining 
(34) and (35) in the simplified case of plane wave excitation 
of a uniform, 1D acoustic medium. 

In this special case, the eigenfunction has the form 

u.(x) = B cos(o~, x/a) 

(apart from an irrelevant phase shift), where a is the wave- 
speed and B is a constant. The deviation of the strain energy 
density from its mean value of (1A) tc, (o)~B/o02 is 

G ~ ( x )  - E . k  - 
1 

/¢u (oJnB/ol) 2 c°s(2°)nX]°O, (37) 

which has V2 the wavelength of the eigenfunction. We will 
assume that w(x) and fix) are periodic, with period L; that 
is, fix) = z(x-mL) for integer m, and similarly for w. Then 
the function w(x)Do,[z(x)] is also periodic with period L and 
therefore has a Fourier series representation, the zeroth-order 
term of which is just wD~on, so that the deviation of 
w(x)Do),[r(x)] from its mean is 

w(x)D,o,[r(x)l - wDco, = ~ aj cos(2~jx/L) 
j = l  

+ ~ b i sin(2rqx/L). (38) 
j = l  

Combining (37) and (38) with (35), we find that the corre- 
lation C~ is only appreciable when the condition 

2 ~c~ / = 2L, j - -  1, (39) 
J \ c o  n / 

is satisfied, where 2tea~co n is the wavelength. Therefore, the 
largest value of wavelength for which the error in the coarse- 
grain representation is significant is 2L. In other words, the 
estimated error is only significant when the wavelength is 
less than or equal to twice the periodicity of the relaxation 
time function r(x). Note, by the way, that (39) is just the 
Bragg condition for backscatter at normal incidence to the 

(35) scattering plane. 

Implementation 

Equation (39) implies a bandwidth limitation in the 
coarse-grain method. Our strategy for its implementation is 
to match this short-wavelength cutoff to the short-wave- 
length limit already present in discrete numerical methods. 
We make w(x) and fix) periodic, with period equal to twice 
the computation unit cell dimension. According to (39), this 
period-two coarse-graining will not result in significant error 
for wavelengths longer than 4 unit-cell dimensions. For rela- 
tively low-order finite-difference methods, including the 
widely used fourth-order staggered grid methods (e.g., Lev- 
ander, 1988), wavelengths shorter than 4 unit-cell dimen- 
sions suffer strong numerical dispersion and are therefore 
already subject to large errors. Thus, any spurious effects of 
period-two coarse-graining should be isolated at wave- 
lengths that are already outside the usable bandwidth of the 
wave propagation calculations. High-order finite-difference 
methods and pseudospectral methods are less restricted by 

(36) numerical dispersion, but suffer other limitations associated 
with the representation of material interfaces (Witte and 
Richards, 1990) when the wavelength is shorter than 4 times 
the cell dimension, and the period-two coarse-grain method 
may turn out to be satisfactory in those applications as well. 

In three dimensions, this two-unit-cell periodicity al- 
lows for eight different values of z at grid nodes. To be 
specific, if this chosen set of discrete relaxation times is % 
k = 1 . . . . .  8, and unit cells are indexed by integers p, q, r, 
such that stress nodes are centered at x = pa 1 + qa2 + ra3, 
then 

"C(X) = "gl + p  mod 2 + 2 (q mod 2) + 4 (r rood 2), (40) 

and w(x) has a similar discrete representation 

W ( X )  = W I +  p rood 2 + 2 (q rood 2) + 4 (r rood 2)" (41) 

Because this approach only permits a discrete set of 
relaxation times (8 in 3D) to be realized, implementation of 
criterion (21) requires first developing a discrete approxi- 
mation to the continuous relaxation spectrum; that is, 

N 

~( ln z )  = ~ 2fi(ln r - lnzi), (42) 
i = l  

as in (12). This is the same step required in the generation 
of a conventional memory variable representation, and any 
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of the optimization methods proposed in the literature (e.g., 
Emmerich and Koru, 1987; Carcione et al., 1988; Witte and 
Richards, 1990; Blanch et al., 1995) for generating conven- 
tional memory variable representations can be used at this 
point. Once the continuous spectrum is replaced by the dis- 
crete spectrum, the conditions defined by (18) to (21) will 
be satisfied if the w i are identified with the quadrature 
weights 2~ but normalized to have unit volumetric mean. 
Because the normalization of (I) implies that the 2i sum to 
1, we then have 

wi = N2i,  (43) 

where N is 8 in three dimension or 4 in two dimension. 
Figure 1 illustrates this period-two scheme. 

Eight relaxation times should be sufficient to approxi- 
mate a frequency-independent Q(co) with very high accuracy 
over roughly 3 decades in frequency. In two dimensions, the 
two-unit-cell periodicity allows for four distinct values of z, 
adequate to approximate frequency-independent Q(co) over 
one and a half decades or more. Compared with a conven- 
tional memory variable method, that is, one in which the 
memory variables are not coarse grained, the coarse-grain 
method with two-unit-cell periodicity can approximate Q(co) 
with the same accuracy, but reduces the memory require- 
ment by a factor of 8 in three dimension and a factor of 4 
in two dimension. 

Numerical  Example  

The above analysis is approximate, and a numerical test 
is necessary to establish the practical accuracy of the coarse- 
grain method. In this section, we test its period-two imple- 
mentation for the case of a plane wave in a uniform, 3D 
acoustic medium, with Q approximately frequency indepen- 
dent. We solve the 3D acoustic equations using a staggered 
grid method, fourth order in space and second order in time 
[Graves (1996) describes the corresponding algorithm for 
the elastodynamic equations]. Equation (17) is time stepped 
using the formula 

((x, t + fit) = ~(x, t)e -z'/~(x) 

6~c 1 
+ w(x )  - -  [~(x, t) 

+ e(x, t + fit)] [1 - e-~t/~(~)]. 

(44) 

A relaxation spectrum, constant on its support interval 
(lnrm, lnZM), yields a good approximation to a frequency- 
independent Q for ZM 1 << co << Zm 1 [this is a change of 
notation from Day and Minster (1984) in that 7rn and z M 
correspond to their z 1 and r2]. ff coo is a reference frequency 

x l / : "c ,~ / 
I ,,76i . . . . . . .  

wz w4 

"T, 4 "C? w4/' w21~ 

? 
I 

J ~V 

Figure 1. Distribution of relaxation times rl and 
weights wi in the period-two coarse-grain scheme. 
Vertices represent computational node points for a 
given stress component. 

near the center of the absorption band, then Qo 1 ___ Q -  1(O9o ) 
is given approximately by 

1-1 Q° 1 ~ rcfx In rM + f_f_K ln(coOrm) . (45) 
2K, k \Zm/ xu 

To approximate this absorption band, we take w(x) equal to 
1 everywhere and prescribe r(x) according to (40), with the 
lnrk uniformly spaced over the interval (lnrm, lnz~/): 

2k - 1 
In rk = In T m - ~  - -  (ln rM -- In Tin). (46) 

16 

The plane wave is given an initial displacement pulse 
shape Uo(t), where 

Uo(t) = 2rc____tt e_  2,t/r, (47) 
T 

which is a broadband, minimum phase pulse with its spectral 
corner at frequency 1/T. In the cases shown below, T is set 
equal to 10n times the propagation time across the unit cell, 
so that the corner frequency corresponds to a wavelength of 
about 30 grid cells. The propagation direction is parallel to 
one of the lattice vectors of the grid. 

We have set the ratio zM/r m to 104, with the objective 
of producing a nearly frequency-independent Q for 10z~ 1 
< co < 0.1rm t. Q0 is defined at reference frequency coo, 
which we set equal to the geometrical mean of z~/1 and 
r,~ 1. We perform calculations for Q0 of 100 and 20. The 
lower cutoff Vm is set equal to (2n)-  1 times the propagation 
time across the unit cell. 
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Figure 2 shows the pulse for the case Qo equal to 100, 
after it has propagated a distance of 26 times the corner 
wavelength. Figure 2a shows the entire pulse, with the later, 
low-amplitude parts of the waveform magnified by factors 
of 100 and 1000. Figure 2b shows the high-amplitude part 
of the pulse on an expanded timescale. For comparison, both 
parts of Figure 2 also show the exact solution [based on the 
frequency-independent Q model of Kjartansson (1979)]. It 
is evident that the coarse-grain method reproduces the ana- 
lytical solution with very high accuracy. The small, negative 
precursor in the numerical solution is a consequence of or- 
dinary numerical dispersion associated with the fourth-order 
finite-difference method and is unrelated to the anelastic re- 
laxation model. 
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Figure 2. Broadband pulse, for the case of Q0 
equal to 100, after propagating a distance of 26 times 
its comer wavelength. Part (a) shows the entire pulse, 
with low-amplitude portions magnified by factors of 
100 and 1000. Part (b) shows the initial portion on an 
expanded timescale. Time has been scaled by the 
source comer frequency 1/T. 

2 9  

Figure 3 shows the corresponding results for Q0 equal 
to 20. As in the previous case, the numerical and exact so- 
lutions are compared in the figure, with the late portion mag- 
nified in Figure 3a and the early portion expanded in Figure 
3b. The numerical solution reproduces both the attenuation 
and physical dispersion of the exact solution with very high 
accuracy. Figure 4 compares the analytical and numerical 
solutions again, this time after convolution with a Ricker 
wavelet with dominant frequencyfR equal to twice the corner 
frequency. Thus, the pulse has propagated 52 times its dom- 
inant wavelength. Again, numerical and analytical solutions 
are virtually indistinguishable, even at late times. 

We can determine an apparent Q, denoted by ()(co), 
from the numerical solutions. We do this using spectral ra- 
tios of the pulse at successive locations; that is, 
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Figure 3. Broadband pulse, for the case of Qo 
equal to 20, after propagating a distance of 26 times 
its comer wavelength. Part (a) shows the entire pulse, 
with low-amplitude portions magnified by factors of 
10 and 100. Part (b) shows the initial portion on an 
expanded timescale. 
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0_1(co ) = - 2  ln[u(x + Ax, e))/u(x, co)], (48) 
coolAx 

where Ax is the propagation distance between locations and 
c~ is the wave speed. This operational definition of Q differs 
from that of equation (10), but at large values of Q, the 
difference is negligible (see, e.g., O'Connell and Budiansky, 
1978). The difference can become significant for small Q, 
and this difference will become evident in our case when Q0 
equals 20. 
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Figure 4. Narrow-band pulse, for the case of Q0 
equal to 20, after it has propagated a distance of 52 
times its dominant wavelength. The pulse was con- 
stmcted by convolving the broadband pulse with a 
Ricker wavelet. The latter has a dominant frequency 
fR equal to twice the comer frequency of the initial 
broadband pulse. Part (a) shows the entire pulse, with 
low-amplitude portions magnified by factors of 10 
and 100. Part (b) shows the initial portion on an ex- 
panded timescale. 

Figure 5 shows ~)(o9) for the numerical solution in the 
case Qo = 100. Four estimates are shown, corresponding to 
spectral ratios at successive 200 grid-cell intervals. The ~)(o9) 
curves are indistinguishable from one another over the entire 
range of frequencies from 103 grids per wavelength to 4 
grids per wavelength. Thus, the coarse-grain method yields 
a spatially homogeneous attenuative behavior over the full 
range of usable frequencies present in the finite-difference 
computations. The variability of the curves at wavelengths 
longer than 103 grid cells is simply a result of the shorter 
pulse durations available for Fourier analysis at greater dis- 
tances (due to later arrival times), 103 grids per wavelength 
corresponding to a period equal to the total post-arrival du- 
ration of the computation at the most distant location. Like- 
wise, 4 grids per wavelength is well below the practical limit 
imposed by numerical dispersion in the fourth-order method 
used here (Levander, 1988). 

In addition to indicating a spatially homogeneous be- 
havior, Figure 5 shows that the method is highly successful 
in producing a frequency-independent ~)(co). The dotted box 
encloses the usable computational bandwidth and indicates 
the 6% tolerance interval about a 0. of 100. For the entire 
computational bandwidth, ~) lies within 6% of the target 
value of 100. Figure 6 shows the corresponding results for 
Q0 = 20. In this case, the difference in definition between 

and Q is significant, and when Q (as defined by equation 
10) is frequency independent and equal to 20, 0 (as defined 
by equation 48) should be approximately 19, as can be ver- 
ified analytically using expressions in Kjartansson (1979). 
As Figure 6 indicates, this target 0 is again achieved within 
6% tolerance over virtually the entire usable computational 
frequency band. For the 2 decades from 5 grids per wave- 
length to 500 grids per wavelength, the variation in O is less 
than + 3% in both the Q0 = 20 and Q0 = 100 cases. 

At wavelengths shorter than 4 grid points, as predicted 
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Figure 5. ~)(co) for the numerical solution in the 
case Q0 equal to 100. Four estimates are shown, cor- 
responding to spectral ratios at successive 200 grid- 
cell intervals. The dotted box delimits the usable com- 
putational bandwidth and the 6% tolerance interval 
about a 0 of 100. 
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Figure 6. 0(o~) for the numerical solution in the 
case Q0 equal to 20. Four estimates are shown, cor- 
responding to spectral ratios at successive 200 grid- 
cell intervals. The dotted box delimits the usable com- 
putational bandwidth and the 6% tolerance interval 
about a ~) of 19 (which corresponds to a Q of 20). 

by the perturbation analysis, backscatter due to coarse grain- 
ing adds to the numerical errors that are already present in 
the form of numerical dispersion. For a low-order finite- 
difference method (such as the fourth-order method tested 
here), wavelengths shorter than four grid points are usually 
considered to lie outside the usable computational band- 
width, as a result of ordinary numerical dispersion alone. 
Whenever that is the case, the anelastic coarse graining im- 
poses no additional limitation on usable bandwidth. On the 
other hand, higher-order finite-difference and pseudospectral 
methods may have sufficient accuracy for some applications 
at wavelengths shorter than four grid points. When that is 
the case, the coarse-grain method will not be appropriate. 

Discussion 

In the numerical example, the period-two coarse-grain 
method achieved a frequency-independent Q, to high accu- 
racy, over more than 2 decades in frequency, using a single 
memory variable per stress component per node. This ac- 
curacy was achieved without any attempts to optimize the 
frequency distribution or weighting of the relaxation times 
in (46). In fact, we did not exploit the flexibility provided 
by the weight function w at all, simply setting it to 1 in the 
example. 

The weight function can be exploited in several differ- 
ent ways to optimize and/or generalize the coarse-grain 
method. For example, if further accuracy were desired in the 
approximation of a frequency-independent Q, any of the op- 
timization methods that have been proposed in the literature 
for generating conventional memory variable representa- 
tions could be used in conjunction with period-two coarse 
graining (e.g., Emmerich and Korn, 1987; Carcione et al., 
1988; Witte and Richards, 1990; Blanch et al., 1995). The 
first step in doing so would be the conventional one: choose 

relaxation times vi and quadrature weights 2i (eight of each 
for three dimension, four of each for two dimension) to op- 
timize the approximation of (11) by (15). Then those relax- 
ation times would be identified with the discrete form of fix) 
(equation 40); the quadrature weights, after being normal- 
ized to unit mean, would be identified with the discrete form 
of w(x) (equation 41). 

A second application of the weight function would be 
to approximate some other desired frequency dependence of 
Q, a power law, for example. As in the case of frequency- 
independent Q, any of the memory variable optimization 
techniques in the literature could be used to find the eight 
relaxation times and quadrature weights, which are then 
identified with the coarse-grain relaxation times and (after 
normalization) weights. 

A third application of the weight function would be to 
further reduce memory requirements in instances where the 
accuracy possible with eight relaxation times is redundant. 
In some seismic exploration problems, for example, a fairly 
narrow-band representation of Q may be acceptable in prac- 
tice. Blanch et al. (1995) have argued that two properly cho- 
sen relaxation times provide sufficient constant-Q bandwidth 
(Q constant within 8% over roughly one decade in fre- 
quency) for many practical purposes, especially given the 
limited problem sizes that are practical with current com- 
puters [Robertsson et aL (1994) have even found a single 
relaxation time to provide an adequate approximation in 
some narrow-band applications in high-resolution reflection 
seismology]. In cases where the two-relaxation-time approx- 
imation is acceptable, for example, we could assign these 
two values to ra and r2 in (40), assign values to wa and w2 
in (41) such that wl + w2 equals 8 (in three dimension; or 
4 in two dimension), and set the remaining wi to zero. This 
strategy would eliminate the need to store any memory vari- 
ables at all at 75% of the nodes in the grid and only 1 per 
node at the remaining 25%, thereby reducing the memory 
variable storage by a factor of 8 (or a factor of 4 in two 
dimension), relative to a conventional 2 memory variable 
method. Obviously, then, with the aid of the weight function, 
any conventional memory variable scheme could be coarse 
grained to achieve an eightfold memory reduction in three 
dimension, or fourfold reduction in two dimension. 

The above numerical example was restricted to the 
acoustic-wave equation. There is no apparent reason, how- 
ever, that the method should not work equally well for the 
elastodynamic case. In fact, it is for the later case that the 
method is likely to be most useful, because the presence of 
six stress components in 3D elastodynamics places very 
large memory requirements on the conventional memory 
variable method. Furthermore, the advantages of the coarse- 
grain method will become even more important as higher 
computing speeds become available. The speed increases 
will permit 3D elastodynamic simulations to be computed 
with ever greater usable bandwidth, and, as computational 
bandwidth increases, memory variables constitute a pro- 
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gressively larger proportion of the total computational mem- 
ory requirement. 

We have established the viability of the coarse-grain 
method for the fourth-order staggered-grid finite-difference 
method, and it should work equally well with other low- 
order finite-difference or finite-element methods. It has yet 
to be established, however, whether the coarse-grain method 
will work effectively with higher-order finite-difference 
methods or with pseudospectral methods. The main issue is 
likely to be whether coarse graining entails any loss of usable 
bandwidth when applied with those numerical methods. The 
staggered-grid pseudospectral methods, in particular, may be 
questionable candidates for the coarse-grain method. In 
pseudospectral methods, the spatial differentiation operators 
are exact if the medium is homogeneous (and the wave field 
spatially periodic and sufficiently bandlimited). In that case, 
the only source of numerical dispersion arises from approx- 
imations associated with the time integration. In the case of 
the staggered-grid pseudospectral methods, numerical dis- 
persion can be kept very small even at the spatial Nyquist 
wavenumber, that is, down to only two nodes per wave- 
length. On the other hand, when discrete interfaces or sharp 
transitions in wave speed are present in the model, three to 
four nodes per wavelength are required in order to accurately 
model the reflection and transmission behavior (Witte and 
Richards, 1990). In cases where the practical limit of the 
pseudospectral method is determined to be four nodes per 
wavelength or greater, the coarse-grain method should be 
effective, though this conjecture will have to be tested nu- 
merically. If so, the method will provide the same degree of 
memory savings that it provides in the case of low-order 
finite-difference methods. 

Summary  

We have developed a new method for introducing ane- 
lastic attenuation into time-stepped numerical methods for 
solving the equations of acoustics and elastodynamics. The 
method is designed to reduce drastically the memory re- 
quirements of anelastic modeling. It takes as its starting point 
an N-pole (i.e., N relaxation time) approximation to the re- 
laxation spectrum. Then, the N corresponding memory vari- 
ables are distributed over the stress node points of the com- 
putational grid, one per stress component per unit cell. An 
analysis via perturbation theory shows that this single mem- 
ory variable method will reproduce the attenuative behavior 
of the N memory variable model, provided the weights as- 
signed each of the N relaxations (corresponding to the resi- 
dues in the N-pole representation) are rescaled to have unit 
volumetric mean, and provided the relaxation times are dis- 
tributed in a periodic array, with period less than half the 
minimum wavelength to be modeled. We make N equal to 
8 for 3D problems and 4 for 2D problems and distribute the 
memory variables so that, for each stress component, the 
relaxation time array has a spatial period, in each direction, 
equal to twice the unit-cell dimension. This period-two 

coarse-grain method is accurate for wavelengths exceeding 
four unit-cell dimensions. 

Accuracy of the method has been verified in numerical 
examples for the 3D acoustic wave equation. The test prob- 
lems were solved using a fourth-order staggered-grid finite- 
difference method. In the numerical examples, a frequency- 
independent Q was achieved within a 3% tolerance over the 
2 decades in frequency from 5 grids per wavelength to 500 
grids per wavelength, using only a single memory variable 
per stress component per node. Straightforward generaliza- 
tions of the method can be used to approximate specific fre- 
quency-dependent Q models such as power laws, or to fur- 
ther reduce memory requirements. 

We expect the method to work equally well for low- 
order finite-difference or finite-element solutions in elasto- 
dynamics. For higher-order finite-difference methods, as 
well as for pseudospectral methods, the utility of the coarse- 
graining method will depend upon the limiting wavelength 
at which the underlying numerical method has acceptable 
accuracy. In those numerical methods in which the usable 
bandwidth is restricted to wavelengths longer than four unit- 
cell dimensions, the coarse-grain method should be accurate 
and efficient. 

In those cases where it is appropriate, the method re- 
duces storage requirements for memory variables by a factor 
of 8 for 3D problems and by a factor of 4 for 2D problems. 
As computer speeds increase, larger problems, and therefore 
higher computational bandwidths, will become feasible. As 
computational bandwidth increases, memory variables will 
account for an increasing proportion of total storage require- 
ments, putting a further premium on the concision achieved 
by the coarse-grain method. 
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