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Stability and Accuracy Analysis of Coarse-Grain Viscoelastic Simulations

by Robert W. Graves and Steven M. Day

Abstract We analyze the stability and accuracy of the coarse-grain memory vari-
able technique used for viscoelastic wave-field simulations. Our analysis shows that
the general behavior of the coarse-grain system is well described by effective param-
eters (ME and QE) that are derived from the harmonic average of the moduli over the
volume of the coarse-grain cell. The use of these effective parameters proves essential
for analyzing the performance and accuracy of the coarse-grain system for Q values
less than about 20. A necessary stability condition for the coarse-grain system re-
quires that the weighting coefficients be bounded between 0 and 1. Specifying the
weights using the approach of Day and Bradley (2001) satisfies this condition for Q
values of about 3 and larger; however, using unconstrained optimization techniques
will often produce weights that violate this condition at much higher Q values. We
also derive a variation of the original coarse-grain methodology called the element-
specific modulus (ESM) formulation in which each element of the coarse-grain cell
uses a different unrelaxed modulus. We demonstrate that the accuracy of the coarse-
grain system for Q values lower than about 20 is significantly improved with the
ESM formulation without increasing the computational cost. Finally, we present a
technique for optimizing the accuracy of the coarse-grain system for very low Q
based on the use of the effective quality factor (QE). We demonstrate that using
conventional optimization techniques that do not employ the effective parameter QE

will actually degrade the accuracy of the coarse-grain system.

Introduction

The memory variable technique offers a powerful tool
for the incorporation of anelasticity into time domain wave-
field simulations (e.g., Day and Minster, 1984; Emmerich
and Korn, 1987; Carcione et al., 1988). This technique mod-
els a prescribed attenuation behavior by constructing a
complex-valued modulus in the frequency domain using a
linear combination of multiple relaxation mechanisms (e.g.,
Liu et al., 1976). Transformation into the time domain yields
a set of memory variables (one for each relaxation mecha-
nism), which are updated using first-order differential equa-
tions. Increasing the number of relaxation mechanisms will
increase the applicable bandwidth of the attenuation operator
and will also improve the fit to the target attenuation model.
In addition, to achieve the same degree of accuracy, models
with strong attenuation (low Q) will generally require more
relaxation mechanisms than models with weak attenuation
(high Q). The drawback with using more relaxation mech-
anisms in the attenuation model is the large cost increase
associated with updating and storing the additional memory
variables. This is particularly burdensome for 3D applica-
tions where the use of more than just one or two discrete
relaxation mechanisms can be very costly (e.g., Robertsson
et al., 1994; Xu and McMechan, 1998).

To address this issue, Day (1998) developed a coarse-
graining methodology for memory variable calculations. In

the coarse-grain approach, individual relaxation mechanisms
are distributed in a spatially periodic manner across adjacent
nodes of a finite-difference or finite-element grid. For 3D
models, up to eight discrete relaxation mechanisms (one per
grid node) can be accommodated in each coarse-grain cell.
Using perturbation theory and verified by example, Day
(1998) showed that the coarse-grain approach yields highly
accurate results for Q k 1 as long as the wave field is sam-
pled at a minimum of 4 points per wavelength. Furthermore,
since only one relaxation mechanism is needed at each grid
location, a tremendous reduction in storage and computa-
tional cost is realized. Recently, Day and Bradley (2001)
have successfully extended the coarse-grain methodology to
viscoelastic simulations.

The analyses of Day (1998) and Day and Bradley
(2001) concentrate on the behavior of the coarse-grain sys-
tem for constant (frequency independent) Q0 values of 20
and greater. Using numerical examples, they find that the
apparent Q measured from coarse-grain calculations matches
the target Q0 to within 4% tolerance over about two decades
in frequency. While the range Q � 20 covers many seis-
mological applications, recent studies illustrate the potential
importance of considering even lower Q values. For exam-
ple, Xu and McMechan (1998) cite Q values as low as 3 for
shallow seismic reflection experiments, and Olsen et al.
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(2001) require Q values as low as 10 for the modeling of
long period (T � 2 sec) earthquake ground motions in the
Los Angeles basin. Other applications using very low Q val-
ues include numerical dampers, such as sponge zones (Israeli
and Orzag, 1981) that are used to reduce artificial reflections
along computational boundaries. These applications stress
the need to gain a better understanding of the coarse-grain
system for low Q values.

Our approach here is to develop theoretical expressions
that can be used to accurately describe the performance and
behavior of the coarse-grain system, especially for low val-
ues of Q. We accomplish this by using effective parameters
(ME and QE), which are derived from the harmonic average
of the viscoelastic moduli over the volume of the coarse-
grain cell. These theoretical expressions predict that the be-
havior of the coarse-grain system begins to significantly de-
viate from that of the general (or non-coarse-grain) system
when the target Q0 value is less than about 20. This result
has important implications for analyzing the accuracy of
coarse-grain calculations and for developing improved for-
mulations of the coarse-grain system.

In the sections that follow, we first provide a brief back-
ground of the memory variable approach and the coarse-
grain implementation, including the specification of the ef-
fective parameters ME and QE. Next, we derive a stability
condition for the coarse-grain system and present an analysis
of stability thresholds for optimized and nonoptimized sys-
tems. We show that optimized systems will generally violate
the stability threshold at much larger Q values than the non-
optimized system. This is followed by a derivation of ex-
pressions for the unrelaxed (or infinite frequency) moduli
using the element-specific modulus (ESM) formulation. This
formulation assigns a different unrelaxed modulus to each
relaxation mechanism and better represents the dispersive
properties of the attenuating medium. We demonstrate
through a series of example calculations that the ESM for-
mulation provides improved accuracy relative to the con-
ventional formulation, at virtually the same computational
cost. In addition, we also show that the results of the ESM
calculations are in very good agreement with the theoretical
behavior of the coarse-grain system as predicted by the ef-
fective parameters ME and QE. We then present a procedure
for optimizing the accuracy of the coarse-grain system based
on the use of QE, and we show that very good results are
obtained even for Q values as low as 2. We conclude with
a layered model comparison to demonstrate the effectiveness
of the ESM formulation in the presence of sharp media in-
terfaces (including a free surface) and then we discuss some
practical considerations of applying the coarse-grain system
in generally heterogeneous 3D media.

Viscoelastic Modulus Representation

In the frequency domain, a general viscoelastic modulus
M(x) can be approximated using a discrete relaxation spec-
trum as

N
dM ajM(x) � M 1 � , (1)u �� �M ixs � 1j�1u j

where Mu is the unrelaxed modulus, is the modulus re-dM
Mu

duction factor, sj are relaxation times (sj � 1/xj), aj are co-
efficients chosen to fit a desired spectrum, and i � (�1)1/2

is the imaginary unit. Equation (1) follows from either equa-
tion (25) of Day and Minster (1984) or equation (11) of
Emmerich and Korn (1987). Using equation (1), the quality
factor is given by

NdM aj1 � � 2 2Re[M(x)] M x s � 1j�1u jQ(x) � � . (2)NIm[M(x)] dM a xsj j� 2 2M x s � 1j�1u j

In the general application of the memory variable method,
given a target Q(x), the coefficients aj and sj can be pre-
scribed using Padé approximants (Day and Minster, 1984)
or simple approximation formulas (e.g., Day and Bradley,
2001), or alternatively, equation (2) can be used to numeri-
cally solve for the coefficients aj and sj (e.g., Emmerich and
Korn, 1987; Xu and McMechan, 1998). Once the aj and sj

are set, equation (1) can be used to derive the viscoelastic-
wave equations and associated memory variable equations
(N equations in all), which then must be solved at each com-
putational node in the model grid (for details, see Emmerich
and Korn, 1987; Robertsson et al., 1994; Xu and McMechan,
1998).

Coarse-Grain Implementation

Without loss of generality, we can rewrite equation (1)
as

N xjM(x) � M 1 � , (3)u �� �ixs � 1j�1 j

where we have set

dM
x � a . (4)j jMu

In the coarse-grain approach, the N memory variables as-
sociated with equation (3) are distributed over N adjacent
grid elements of the discrete simulation model, so that there
is only one memory variable for each grid element (Day,
1998; Day and Bradley, 2001). This implies that each grid
element has its own discrete viscoelastic modulus given by

x̄kM (x) � M 1 � , (5)k k � �u ixs � 1k
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where k � 1, . . . , N in the periodic manner described by
Day (1998), is the element specific unrelaxed modulus,Mku

and

VTx̄ � x (6)k kVk

are the volumetric normalized coefficients, with the volume
of the kth grid element given by Vk and the total volume of

the N adjacent grid elements given by .
N

V � VT � j
j�1

The coarse-grain theory developed by Day (1998) states
that for wavelengths longer than about 4 grid elements and
for Q k 1, the application of equation (5) at N adjacent grid
elements will yield a good approximation to the general re-
laxation spectrum given by equation (1) and thus will sat-
isfactorily reproduce the attenuation behavior predicted by
equation (2).

However, as will be shown later, the general behavior
of the coarse-grain system is actually better described not by
the general modulus given in equation (1), but rather by the
effective modulus that is derived from the harmonic average
of the Mk(x) over the volume of the coarse-grain cell. We
define this effective modulus as ME(x), which is given by

N �1VkM (x) � V , (7)E T �� �M (x)k�1 k

with an associated effective quality factor QE(x) given by

Re[M (x)]EQ (x) � . (8)E Im[M (x)]E

More complete expressions for ME(x) and QE(x) are given
in the Appendix. Our use of harmonic averaging to define
effective parameters follows from analogous formulations
used to precisely represent media heterogeneity in grid based
calculations (e.g., Zahradnı́k et al., 1993; Graves, 1996;
Moczo et al., 2001). In the next section, we show that for
target Q values greater than about 20, there is little difference
between the effective modulus given by equation (7) and the
general modulus given by equation (1). However, for smaller
values of Q, the difference becomes quite significant, and it
is shown that the behavior of the coarse-grain system follows
very closely the theoretical behavior predicted by these ef-
fective parameters. Thus, these effective parameters provide
a general framework for analyzing and optimizing the ac-
curacy of the coarse-grain system, particularly for low values
of Q.

Stability Analysis

To ensure physical stability for any viscoelastic modu-
lus, two necessary conditions must be satisfied. First, the
modulus at zero frequency (relaxed modulus) must remain

strictly positive, and second, the general viscoelastic mod-
ulus must be dissipative for all frequencies. The first condi-
tion follows from thermodynamic considerations of Hooke’s
law, and the second condition places a positivity constraint
on the quality factor (negative values would give rise to en-
ergy amplification, not dissipation). Satisfying both of these
conditions using the discrete relaxation spectrum formula-
tion requires that both the real and imaginary parts of the
spectrum remain positive.

Starting with equation (5), we rewrite this expression
into its discrete real and imaginary parts, giving

x̄ x̄ xsk k kM (x) � M 1 � � i . (9)k k � 2 2 2 2 �u x s � 1 x s � 1k k

Visual inspection of equation (9) leads to the following sta-
bility condition

x̄k0 � � 1, (10)2 2x s � 1k

which, since this must hold for all x2 � 0, can be simplified
to

0 � x̄ � 1. (11)k

Equation (11) represents a necessary stability condition for
the memory variable system, and it must be satisfied regard-
less of how the x̄k and sk coefficients are determined.

In satisfying this stability condition, there exists a trade-
off between the absorption bandwidth over which the pre-
scribed relaxation spectrum is valid and the accuracy to
which this relaxation spectrum matches the desired Q model.
Furthermore, given a prescribed absorption bandwidth, there
will generally be some minimum value of the desired Q
model below which the stability condition will be violated.
For example, Day (1998) and Day and Bradley (2001) as-
sume a frequency-independent Q model and use a simple
procedure to set all of the coefficients x̄k in the coarse-grain
system equal to the same constant value

dM 2 ln(s /s )M 0x̄ � � , (12)k M [pQ � 2 ln(x s )]u 0 0 0

with the sk evenly distributed on a logarithmic scale

lns � ln sk 0

2k � 1
� [ln(s /s )] k � 1, . . . , N. (13)M 02N

Here, s0 and sM are the lower and upper absorption-band
cutoffs, and x0 is a prescribed reference frequency where
the resulting relaxation spectrum matches the desired con-
stant Q0. Setting x0 � (sMs0)

�1/2 (i.e., the geometric aver-
age of the absorption-band cutoffs), inserting equation (12)



286 R. W. Graves and S. M. Day

into the stability condition (11) and rearranging terms, we
get

�pQ � ln(s /s ) � pQ . (14)0 M 0 0

By definition sM � s0, thus the lower bound condition will
always be satisfied with this simple parameterization. How-
ever, for a given sM and s0, there will always be a minimum
(positive) Q0 below which the upper bound condition will
be violated. For example, using numerical experiments, Day
(1998) showed that the relation sM/s0 � 104 provides a
nearly frequency-independent Q (for Q � 20) over more
than two decades of bandwidth. Inserting this value into
equation (10), we have the requirement Q0 � ln(104)/p � 3.

Figure 1 plots the resulting Q(x) and QE(x) obtained
from equations (2) and (A6) respectively, using the above
coefficient parameterization (i.e., equations 12 and 13) with
N � 8, and various target values of Q0. Also shown on this
plot are the values of x̄k associated with each Q0. This plot
clearly shows that as the target Q0 decreases, the approxi-
mation provided by the above parameterization becomes in-
creasingly less accurate. In addition, as Q0 decreases, the x̄k

coefficients increase, with the value at Q0 � 2 exceeding
the stability limit. This figure also shows that the effective
quality factor QE(x) provides a less accurate fit to the target
Q0 than the general quality factor Q(x) that would result
from a non–coarse-grain implementation. For this parame-
terization, the difference between Q(x) and QE(x) is only
significant for Q0 less than about 10. Numerical simulations
are in agreement with this theoretical behavior.

In theory, more accurate representations of Q(x) can be
obtained by optimizing the x̄k and sk using numerical tech-
niques (e.g., Emmerich and Korn, 1987; Xu and McMechan,
1998). Although these optimization procedures can provide
a very accurate match to the general Q(x) over a specified
bandwidth, they will generally produce x̄k that will violate
the coarse-grain stability condition (11) at a much higher
target Q value than when using a simpler approximation.
Furthermore, the effective quality factor of the coarse-grain
system QE(x) obtained from these types of optimization pro-
cedures can be very different from the general Q(x).

We demonstrate this behavior by using the least-squares
algorithm of Emmerich and Korn (1987) to solve for the
coefficients x̄k for various values of Q0. Again, the sk were
prescribed using the relation of Day and Bradley (2001) and
we set sM/s0 � 104 and N � 8. Figure 2 plots the resulting
Q(x) and QE(x) for this parameterization, and various val-
ues of Q0. Also shown are the maximum of the x̄k coefficients
obtained for each Q0. Clearly, the match to the general at-
tenuation model Q(x) is quite accurate even for very small
values of Q0. However, the maximum of the x̄k coefficients
increases quite rapidly with decreasing Q0, and exceed the
stability limit at about Q0 � 10. In addition, as Q0 decreases,
the effective quality factor QE(x) begins to diverge quite
significantly from the general Q(x). Since it is the QE(x)
that governs the attenuation behavior of the coarse-grain

method, optimizing the fit to the general Q(x) will actually
degrade the accuracy of the coarse-grain system. This be-
havior will be demonstrated later by example, and we will
subsequently exploit this fact to show that improved accu-
racy can be obtained by optimizing directly on QE(x) instead
of on Q(x).

Specification of the Element-Specific
Unrelaxed Modulus

Day and Bradley (2001) give an expression for the un-
relaxed modulus based on the constant Q0 model, and they
assume that the unrelaxed modulus (Mu) is the same at all
of the N adjacent grid elements in the coarse-grain system.
For Q0 greater than about 20, this approach works reason-
ably well. However, this formulation equalizes the element-
specific phase velocities at infinite frequency. Since each
relaxation mechanism gives rise to a different dispersion re-
lation, the result is to induce small-scale heterogeneity in the
phase velocity at those frequencies that fall within or below
the absorption band. The performance of the method is im-
proved, especially at very low Q, if we instead minimize the
phase-velocity heterogeneity at some reference frequency
falling near the center of the band of computational interest.
We can accomplish this by permitting the element-specific
unrelaxed moduli ( ) to vary within the coarse-grain cellMku

in such a way as to equalize the element specific frequency-
dependent moduli at the reference frequency.

Following Kjartansson (1979), the phase velocity in an
attenuating medium is given by

1/2
q�1c (x) � Re , (15)�� � �M(x)

where q is the medium density. Inserting the element-
specific modulus (equation 9) for the modulus in equation
(15), and then evaluating the resulting expression at a ref-
erence frequency f 0 � x0/2p, we get (after rearranging
terms)

1 �1/22 2 2M � c q [A � B ]k 0 k ku 0 02 (16)
2 2 �1/2{1 � A [A � B ] },k k k0 0 0

where

x̄ x̄ x sk k 0 kA � 1 � and B � , (17)k k2 2 2 20 0x s � 1 x s � 10 k 0 k

and c0 is the prescribed propagation velocity at the reference
frequency.

Equation (16) can be interpreted as a prescription for a
set of element-specific unrelaxed moduli that ensure spa-Mku

tial homogeneity (i.e., over the coarse-grain cell) of the mod-
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Figure 1. Plots of Q(x) (thin line, from equation 2) and QE(x) (thick line, from
equation A6) determined using the formulation of Day and Bradley (2001) to specify
the x̄k coefficients for various target values of Q0. The maximum x̄k for each Q0 is
shown at the upper right of each panel.

ulus at the reference frequency f 0. This equation has two
important implications. First, even if the reference medium
is entirely homogeneous, this expression requires that the N
adjacent grid elements in the coarse-grain system each have
a different elastic (unrelaxed) modulus. However, this ap-
parent heterogeneity will exist only at very short wave-
lengths (and high frequencies). The above parameterization
will provide a good approximation to the frequency-depen-
dent modulus as long as the propagation wavelengths are
about 4 grid elements or greater (consistent with the coarse-

grain theory developed by Day [1998]). For low-order finite-
difference (FD) and finite-element (FE) implementations,
this condition is easily satisfied.

The second implication of using equation (16) is that
the maximum allowable timestep will be controlled by the
largest in the entire model domain, which will alwaysMku

be larger than the corresponding effective Mu. This effect
might be significant, particularly when low values of Q0 oc-
cur in the highest velocity portions of the model. Fortu-
nately, the lowest Q values tend to strongly correlate with
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Figure 2. Plots of Q(x) (thin line, from equation 2) and QE(x) (thick line, from
equation A6) determined using the least-squares formulation of Emmerich and Korn
(1987) to specify the x̄k coefficients for various target values of Q0. The maximum x̄k

for each Q0 is shown at the upper right of each panel.

the lowest velocities, so the overall impact of this second
effect is generally not significant.

To demonstrate the importance of using the element
specific modulus given by equation (16), we have performed
a series of numerical calculations using a 3D staggered-grid
FD code (Graves, 1996). These calculations use plane-wave
models similar to that used by Day (1998) and Day and
Bradley (2001). The calculations are initiated by imposing
a velocity pulse with shape s(t) � t exp(�t/T) along one
plane of the 3D grid. Motion is specified either normal (P
wave) or parallel (S wave) to the plane. The medium is a

whole space with P- and S-wave velocities of 6 km/sec and
3.46 km/sec, respectively, prescribed at a reference fre-
quency of f 0 � 1 Hz and a density of 2.7 g/cm3.

We use a constant Q model and set the x̄k and sk coef-
ficients using equations (12) and (13). Two values of Q0 are
considered, 20 and 5, and the associated s0, sM, f 0 and cmax

(maximum propagation velocity as determined from equa-
tion 16), are shown in Table 1. These values of s0 and sM

give a target bandwidth for the constant Q0 model of about
four decades (roughly 0.01–100 Hz). While these Q values
are much lower than might be expected for the prescribed
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Table 1
Attenuation Parameters for Plane-Wave Tests

Qo so sM f o(Hz) cmax(km/sec)

20 0.00159 15.9 1.0 6.97
5 0.00159 15.9 1.0 11.87

seismic velocities, this model is useful for demonstrating the
performance of the technique. In a later section, we will
consider a model with a more realistic layered velocity struc-
ture. For all calculations, the source duration parameter T is
set to 0.1, and the grid spacing is 0.1 km.

Figure 3 plots the velocity waveforms simulated at a
propagation distance of 10 km for each of the previous cases.
At the characteristic source duration T, this propagation dis-
tance corresponds to about 16 wavelengths for P waves and
about 29 wavelengths for S waves. The analytic solution is
computed using the formulation of Kjartansson (1979). We
used two different formulations to specify the unrelaxed
modulus in the FD simulations. The first (labeled Element-
Specific and hereafter referred to as the ESM formula-Mku

tion) uses equation (16) to determine the element-specific
unrelaxed modulus for each of the 8 adjacent grid elements
in the coarse-grain system. The second (labeled Constant Mu

and hereafter referred to as the CM formulation) uses the
method of Day and Bradley (2001) to determine a single
unrelaxed modulus, which is then used for all grid elements
in the entire model. In all cases, the velocity pulse is nor-
malized to unit amplitude at zero distance. Thus, for a purely
elastic medium (Q � infinity), the amplitude of the velocity
pulse would remain at unity for all propagation distances.

For Q0 � 20, the ESM formulation gives an excellent
match to the timing, waveform, and amplitude of the analytic
time history for both P and S waves. The CM formulation
produces a very good result for this Q0 value as well, with
the only noticeable shortcoming being a slight phase delay
of the pulse. At Q0 � 5, the difference in performance be-
tween the two formulations is much more significant, with
the ESM formulation clearly providing a better overall match
to the analytic response. Although both formulations under-
predict the amplitude of the analytic pulse, the CM response
also exhibits a significant phase delay.

Taking the response at two locations separated by a dis-
tance Dx, we can measure the apparent Q from these plane-
wave tests using the relation

c(x)�1Q (x) � �2 [ln|v(x � Dx,x)| (18)A
xDx

� ln|v(x,x)|],

where |v(x,x)| is the Fourier amplitude spectrum of the ve-
locity time history at location x and the frequency-dependent
phase velocity c(x) is given by (Kjartansson, 1979)

c �1
x pc

c(x) � c cos , (19)0 � � � � ��x 20

with c0 the specified velocity at reference frequency f 0 and

1 1�1c � tan . (20)� �p Q0

Equation (18) differs slightly from the relation used by Day
and Bradley (2001) in that we use c(x) instead of the con-
stant c0. The form used here gives more accurate results for
low Q values.

Figure 4 plots the QA computed for each of the above
plane-wave calculations at a separation distance of Dx � 2
km. These results are plotted up to 12 Hz for P waves and
7 Hz for S waves, which corresponds to a sampling of 5 grid
points per respective wavelength. The low-frequency cutoff
for the results is determined by the total computed duration,
which is generally about 12–15 sec.

For Q0 � 20, both formulations do reasonably well at
matching the desired Q behavior over roughly two decades
of frequency (centered at the reference value of 1 Hz). As
discussed by Day (1998) and demonstrated by the results in
Figure 4, the accuracy of the coarse-grain method begins to
diminish near the 5 grid points per wavelength sampling
limit. For Q0 � 5, the accuracy of both formulations is re-
duced relative to the higher Qo case. However, the ESM for-
mulation still matches the target Q0 value to about �25%
over the central two-decade frequency band, whereas the CM
formulation significantly underpredicts the target Q0 over
most of this same bandwidth.

Also shown in the panels of Figure 4 are the coarse-
grain effective Q curves [QE(x)] given by equation (A6). In
each case, the ESM formulation follows the theoretical be-
havior of the QE(x) curve reasonably well, particularly for
frequencies above 1 Hz. At lower frequencies, the ESM re-
sults deviate somewhat from the theoretical curves (most
noticeable for the S wave case at low Q). We suspect that
this deviation is caused by (very low amplitude) artificial
boundary reflections, which are virtually impossible to sup-
press completely from the calculations. The importance of
considering the QE(x) behavior will be discussed further in
the following section.

As a final comparison, we have computed the P- and S-
wave phase velocities for each of the plane-wave calcula-
tions, and these results are plotted in Figure 5. The phase
velocity is obtained by measuring the phase delay of each
Fourier component in the computed time history at two ad-
jacent locations (1 km apart in this case). In the plots shown
in Figure 5, we have normalized the measured phase velocity
by the theoretical value given by equation (19), thus a value
of one gives an exact match to the analytic result.

For Q0 � 20, the ESM formulation provides a very close
match to the theoretical result across roughly two decades
of frequency. The CSM formulation produces a phase ve-
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Figure 3. Waveform comparison for plane P-wave (left panels) and S-wave (right
panels) calculations with target Q0 values of 20 (upper panels) and 5 (lower panels).
Propagation distance is 10 km. The analytic solution (solid line) is from Kjartansson
(1979). For the coarse-grain calculations, the element-specific solution (dashedMku

line) uses equation (16) to specify the unrelaxed moduli and the constant Mu solution
(dotted line) uses the method of Day and Bradley (2001) to specify the unrelaxed
modulus. Both coarse-grain solutions use the method of Day and Bradley (2001) to
specify the x̄k and sk coefficients.

locity that is about 1% less than the theoretical value over
this same bandwidth. This result is consistent with the ob-
served phase delay seen in Figure 3. For Q0 � 5, both for-
mulations exhibit significant dispersion relative to the theo-
retical value; however, the ESM formulation clearly provides
a more accurate result. The largest mismatch of the ESM

formulation is on the order of a few percent and occurs at
the lower frequencies. In the time domain, this is manifest
by a slight delay of the waveform tails as seen in the lower
panels of Figure 3. On the other hand, the CM formulation
underpredicts the theoretical value by roughly 10% over
most of the bandwidth, resulting in a noticeable delay of the
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Figure 4. Apparent attenuation (QA) for the plane P-wave (left panels) and S-wave
(right panels) calculations with target Q0 values of 20 (upper panels) and 5 (lower
panels). Separation distance is 2 km. The shaded region represents �25% variation
around the target Q0 value. For the coarse-grain calculations, the element-specific

solution (thick line) uses equation (16) to specify the unrelaxed moduli and theMku

constant Mu solution (dashed line) uses the method of Day and Bradley (2001) to
specify the unrelaxed modulus. Both coarse-grain solutions use the method of Day and
Bradley (2001) to specify the x̄k and sk coefficients. Also shown are theoretical QE(x)
curves determined from equation (A6).

entire waveform pulse as shown in Figure 3. Also shown in
this figure are the effective phase velocity curves cE(x),
which we have derived from the effective modulus ME(x)
using equation (15). For each case, the behavior of the ESM
calculation is predicted nicely using the theoretical cE(x)
curves.

Significance of Effective Parameters ME and QE

The importance of using the effective parameters ME

and QE to analyze the behavior of the coarse-grain system
is further demonstrated by the results shown in Figure 6.
Here, we approximate a constant Q0 of 12 with the general
Q(x) given by equation (2) and solve for the x̄k coefficients
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Figure 5. Normalized phase velocity measured from the plane P-wave (left panels)
and S-wave (right panels) calculations with target Q0 values of 20 (upper panels) and
5 (lower panels). For the coarse-grain calculations, the element-specific solutionMku

(thick line) uses equation (16) to specify the unrelaxed moduli and the constant Mu

solution (dashed line) uses the method of Day and Bradley (2001) to specify the un-
relaxed modulus. Both coarse-grain solutions use the method of Day and Bradley
(2001) to specify the x̄k and sk coefficients. Also shown are theoretical cE(x) curves
determined from equations (15) and (A5).

using the least-squares algorithm of Emmerich and Korn
(1987). The sk are the same as in the preceding calculations,
and we use the ESM formulation. As shown in Figure 2, this
parameterization gives a maximum x̄k that is just within the
stability threshold for the coarse-grain system. Figure 6 com-
pares the theoretical and computed waveforms, apparent at-
tenuation (QA), and measured phase velocity for this for-

mulation. Here, we only show results for P waves, although
very similar results are obtained for S waves.

As discussed earlier (Fig. 2), the theoretical behavior of
the general Q(x) for the least-squares formulation matches
the constant Q0 of 12 very well over nearly 4 decades of
frequency. For a non–coarse-grain system, we would expect
this parameterization to produce numerical results that
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Figure 6. Theoretical and calculated waveform (upper left), QA (upper right) and
phase velocity (lower right) comparisons for the plane P-wave model with Q0 � 12,
and using the least-squares approach of Emmerich and Korn (1987) to determine the
x̄k coefficients. Theoretical curves for the general [Q(x) and c(x)] and effective [QE(x)
and cE(x)] parameters are included in the right panels.

closely follow this predicted theoretical behavior. However,
the comparisons in Figure 6 clearly show that when used in
the coarse-grain system, the least-squares parameterization
actually produces very poor results. The reason for this is
that the behavior of the coarse-grain system is more accu-
rately described by the effective parameters, QE(x) and
cE(x), which for this case, are quite different than the general
parameters Q(x) and c(x). The apparent attenuation and
phase velocity plots in Figure 6 illustrate the nice agreement
between the theoretical curves for QE(x) and cE(x) and the
computed response. This example highlights the pitfalls in
using the general Q(x) to determine the choice of the x̄k

coefficients for the coarse-grain system, since the accuracy
of resulting parameterization may actually be significantly
degraded.

Improved Accuracy and Stability for Low Q0

The results from the preceding section suggest that a
better approach for improving the accuracy of the coarse-
grain system is to use the effective parameter QE(x) instead
of the general Q(x) to guide the determination of the x̄k and
sk coefficients (e.g., by optimizing the fit to the target Q0).

The relationship among the x̄k, sk, and QE(x) is highly
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Table 2
Coefficients for Optimized Low Q0 Models

Qo � 5 Qo � 2

k x̄k sk x̄k sk

1 0.700552 5.03655 � 10�3 0.863550 4.48560 � 10�3

2 0.666418 6.52579 � 10�3 0.863550 4.48560 � 10�3

3 0.609150 1.54751 � 10�2 0.863550 4.48560 � 10�3

4 0.602998 4.36147 � 10�2 0.863550 1.78575 � 10�2

5 0.567881 9.48709 � 10�2 0.863550 1.78575 � 10�2

6 0.609272 0.267383 0.863550 7.10919 � 10�2

7 0.666418 0.753587 0.863550 0.224812
8 0.659820 1.94820 0.863550 0.252244

nonlinear (see Appendix). Here, we use a simple grid search
perturbation algorithm to determine the coefficients given a
target Q0. In general, any of a variety of nonlinear solution
algorithms can be used to determine these coefficients, each
having its own optimization criteria. Our fitting criterion
seeks to minimize the sum of the squared residuals between
QE(x) and Q0 over the prescribed absorption bandwidth. The
approach used here results in a system that matches the target
Q0 reasonably well over about two decades in frequency (as
shown below). Table 2 lists the coefficients for target Q0

values of 5 and 2 determined with this technique for the ESM
formulation. Figures 7, 8, and 9 show, respectively, the
waveforms, apparent attenuation (QA), and phase velocity
obtained from plane P- and S-wave calculations that use
these optimized parameters. All other model parameters are
the same as in previous tests.

For Q0 � 5, an excellent fit is obtained between the
theoretical and computed responses, with the measured QA

matching the target Q0 to within a few percent over roughly
two decades of frequency. In Figures 8 and 9, we also show
theoretical curves for QE(x) and cE(x) to illustrate how the
computed response closely follows the behavior predicted
by the effective parameters. For Q0 � 2, the fit to the theo-
retical response is still remarkably good, with the measured
QA matching the target Q0 to within a few percent over
roughly one-and-a-half decades of frequency. Again, the ef-
fective parameters QE(x) and cE(x) provide a reasonably
accurate prediction of the behavior of the computed results.

It becomes increasingly difficult to derive a coarse-grain
system that is valid over an appreciable bandwidth for Q
values lower than about 2 because the x̄k coefficients are very
close to the stability limit (see Table 2). The only way to
maintain stability for these very low Q values is to decrease
the spread of the sk coefficients. In the limit that all the sk

are equal, the coarse-grain system reduces to a narrow-band
model with only a single memory variable (Robertsson et
al., 1994).

Layered Model Test

We test the performance of the coarse-grain formula-
tions in more complex media (including a free surface) by
running calculations for the three layer model listed in Table
3. A point double-couple with strike � 90�, dip � 90�, rake
� 0�, and M0 � 1023 dyne•cm is used to initiate the cal-
culations. The source depth is 2 km, and the moment rate
function is a cosine-bell function given by

M0 (1 � cos2pt/T), if 0 � t � T;
TṀ (t) � (21)0 �0, otherwise;

with a width of T � 0.2 sec. The resulting time histories are
analyzed for an observation point located 5 km from the
source at an azimuth of 143�. The FD calculations use a grid

spacing of 100 m, yielding a maximum frequency resolution
of 1 Hz for a shear-wave sampling of 5 grid points per wave-
length in the lowest velocity region of the model. In addition
to the FD calculations, we also compute the solution using
the frequency wavenumber (FK) technique. All results are
low-pass filtered using a fourth-order, zero-phase Butter-
worth operator with a corner at 1 Hz.

First we compare the FD and FK results for a purely
elastic (infinite Q) model. This comparison allows us to an-
alyze the fidelity of the FD solution for the prescribed model
parameters. Figure 10 plots the computed time histories and
their associated Fourier amplitude spectra. The agreement
between the FD and FK results is excellent in both the time
and frequency domains. The only noticeable difference is a
very slight delay of some of the later phases of the FD result,
which can be attributed to the effects of numerical grid dis-
persion within the shallowest velocity layer.

Figure 11 compares the three coarse-grain FD formu-
lations (Optimized ESM, ESM, and CM) with the FK result
for the anelastic model. Obviously, the effects of anelasticity
have a strong impact on the waveforms relative to the purely
elastic case, most notably by reducing the overall amplitude
of the signals and by suppressing much of the later arriving,
shorter period energy. Both the Optimized ESM and ESM
formulations do an excellent job of matching the waveforms
and spectra of the anelastic FK result, demonstrating the abil-
ity of these formulations to accurately model very low (spa-
tially variable) Q in the presence of sharp media boundaries
and a free surface. In addition, the CM formulation performs
reasonably well for this model. However this formulation
tends to underpredict the amplitudes of the waveforms (par-
ticularly at shorter periods on the horizontal components)
and exhibits a noticeable phase delay of the S waves and
surface waves. These characteristics are consistent with the
theoretical behavior of the CM formulation discussed earlier.

Discussion

The examples and theoretical analysis in the previous
sections demonstrate the improved accuracy that is provided
by the ESM formulation compared with the CM formulation,
particularly for low Q values. From a practical standpoint,
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Figure 7. Waveform comparison for plane P-wave (left panels) and S-wave (right
panels) calculations with target Q0 values of 5 (upper panels) and 2 (lower panels).
Propagation distance is 10 km. The analytic solution (solid line) is from Kjartansson
(1979). For the coarse-grain calculation, the element-specific solution (dashed line)Mku

uses equation (16) to specify the unrelaxed moduli, and the x̄k and sk coefficients are
determined using a grid search algorithm to optimize the fit of QE(x) to the target Q0

value.

the implementation cost of the ESM formulation is virtually
identical to the CM formulation (about 50%–60% increase
in memory and CPU for either formulation relative to the
purely elastic case). One possible exception to this is a model
where the highest velocity material also has a very low Q,
in which case the ESM formulation would require a smaller
timestep than the CM formulation. Fortunately, for most ap-
plications the lowest Q values tend to strongly correlate with

the lowest velocities, so the impact of this effect will gen-
erally be insignificant. In fact, for our layered model test,
the timestep requirement was the same for the CM, ESM, and
Optimized ESM formulations.

Our results also demonstrate that the Optimized ESM
formulation can provide a high degree of accuracy for very
low Q models. However, there are some issues concerning
the general application of the optimized formulation that
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Figure 8. Apparent attenuation (QA) for the plane P-wave (left panels) and S-wave
(right panels) calculations with target Q0 values of 5 (upper panels) and 2 (lower
panels). Separation distance is 2 km. The shaded region represents �25% variation
around the target Q0 value. For the coarse-grain calculation, the element-specific Mku

solution (thick line) uses equation (16) to specify the unrelaxed moduli, and the x̄k and
sk coefficients are determined using a grid search algorithm to optimize the fit of QE(x)
to the target Q0 value. Also shown are theoretical QE(x) curves determined from equa-
tion (A6).

warrant further discussion. First, the overhead cost associ-
ated with determining the optimized x̄k and sk coefficients
for a generally heterogeneous 3D model may be quite sig-
nificant. For example, Olsen et al. (2001) have proposed a
Q model for the Los Angeles basin that is proportional to
the local seismic-wave velocity, which may be different at
each grid point in the model. Optimization would require the

calculation of the coefficients at each coarse-grain cell hav-
ing a different Qp and/or Qs value. Some cost savings may
be realized by precomputing and tabulating the coefficients
for a limited number of reference Q values, and then assign-
ing a reference value to each grid point. However, the prac-
tical benefit and accuracy of this type of approach needs
further investigation.
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Figure 9. Normalized phase velocity measured from the plane P-wave (left panels)
and S-wave (right panels) calculations with target Q0 values of 5 (upper panels) and 2
(lower panels). For the coarse-grain calculations, the element-specific solutionMku

(thick line) uses equation (16) to specify the unrelaxed moduli, and the x̄k and sk

coefficients are determined using a grid search algorithm to optimize the fit of QE(x)
to the target Q0 value. Also shown are theoretical cE(x) curves determined from equa-
tions (15) and (A5).

Table 3
Layered Velocity Structure

Vp

(km/sec)
Vs

(km/sec)
Density
(g/cm3) Qp Qs

Thickness
(km)

1.7 0.5 2.1 10 5 0.55
3.0 1.2 2.3 20 10 1.00
6.0 3.464 2.7 100 50 —

An additional issue is the trade-off between the added
cost of optimization and the benefit of increased accuracy.
Our layered model test indicates that there is not a significant
difference in the performance of the optimized versus non-
optimized versions of the ESM formulation even for models
with Q values as low as 5. Most seismic applications fall
into a class of models with Q � 5, and our results suggest
that the non-optimized ESM formulation can easily handle
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Figure 10. Comparison of FD and FK simulations for the purely elastic layered
model test. Top panels show three component velocity waveforms at a range of 5 km
from the source. Peak velocity for each component is indicated at upper right of each
set of traces. Lower panels compare the Fourier amplitude spectra (unsmoothed) for
the simulations. All results have been lowpass filtered at 1 Hz.

these applications with a very high degree of accuracy. For
models with Q � 5 (e.g., shallow reflection applications; Xu
and McMechan, 1998), optimized formulations may be used,
or alternatively, the non-optimized ESM formulation can also
be extended to very low Q values by reducing the range of
the absorption band (see equation 14).

Another potential application involving very low Q is
the suppression of artificial reflections in sponge zones ad-
jacent to absorbing boundaries (Israeli and Orzag, 1981;
Robertsson et al., 1994). The broadband nature of the
coarse-grain system allows for a more complete absorption
of energy than the single memory variable scheme proposed
by Robertsson et al. (1994) at no additional cost. For effi-
ciency, we use the CM formulation in the sponge zone and
gradually reduce the Q values to a minimum of Q � 5 right
at the boundary. Although the CM formulation is less ac-
curate than the ESM formulation, it requires a smaller value
of the unrelaxed modulus, which consequently permits a
larger timestep. This is an important consideration when
high-velocity regions of the model lie along the computa-
tional boundary. The loss of accuracy in the sponge zone is
of no practical significance since the goal is to remove this
energy from the system anyway.

Although our present analysis only considers the case
of frequency-independent Q, there is no theoretical reason
that restricts the coarse-grain methodology to this special
case. In the more general case [i.e., Q � Q(x)], the key to
the coarse-grain formulation is determining the weighting
coefficients (x̄k) that can reproduce the desired frequency

behavior of the attenuation model. Unfortunately, unlike the
constant Q0 case, we are not aware of a simple analytic ex-
pression (such as equation 12) that can adequately represent
the x̄k when Q is frequency dependent. In this situation, it
may be necessary to use a numerical procedure to solve for
the x̄k by fitting the QE(x) to the desired Q(x), such as that
discussed earlier. The practical aspects of this approach are
the subject of future study.

As a final point of discussion, we note that while most
of the theoretical analysis presented here is based on simple
models, our ultimate goal is to apply this technique to gen-
erally heterogeneous 3D media. In this case, each grid ele-
ment may have different moduli and Q values. However,
with the coarse-grain method, all elements of the coarse-
grain cell (eight adjacent nodes in 3D) must have the same
Q value (although they can still have different moduli). This
effectively limits the spatial resolution of Q variability to
twice the grid size. Previous studies have shown that har-
monic averaging of the volumetrically normalized moduli
provides the correct representation of internal media bound-
aries, even at the sub-grid level (e.g., Zahradnı́k et al., 1993;
Graves, 1996; Moczo et al., 2001). Following this approach,
we calculate the target Q value for each coarse-grain cell by
harmonically averaging the eight input Q values over the
volume of the coarse-grain cell. This approach has worked
very well in our test calculations (e.g. the layered model
test); however, further evaluation is needed to more fully
document the theoretical basis for this representation.
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Figure 11. Comparison of FD and FK simulations for the anelastic layered model
test. Three different FD simulations were performed, using respectively, the CM, ESM,
and Optimized ESM formulations. Top panels show three component velocity wave-
forms at a range of 5 km from the source. Peak velocity for each component is indicated
at upper right of each set of traces. Lower panels compare the Fourier amplitude spectra
(unsmoothed) for the simulations. All results have been low-pass filtered at 1 Hz.

Conclusions

In this article, we provide a theoretical analysis of the
stability and accuracy of the coarse-grain anelastic technique
originally developed by Day (1998) and Day and Bradley
(2001). We show that the behavior of the coarse-grain sys-
tem is best described by effective parameters (ME and QE)
that are derived from the harmonic average of the moduli

over the volume of the coarse-grain cell. The use of these
effective parameters is essential for analyzing the perfor-
mance and accuracy of the coarse-grain system, particularly
for low values of Q. Our analysis derives a necessary sta-
bility condition for the coarse-grain system, which states that
the weighting coefficients must lie between 0 and 1. Using
the approach of Day and Bradley (2001) to specify the
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weights satisfies this stability condition for Q values of about
3 and larger. However, using unconstrained optimization
techniques will produce weights that violate this condition
at much higher Q values. We also derive a modification of
the original coarse-grain methodology called the element-
specific modulus (ESM) formulation, in which each element
of the coarse-grain cell has a different unrelaxed modulus.
We demonstrate that the accuracy of the coarse-grain system
for Q values lower than about 20 is significantly improved
by using the ESM formulation. The cost of implementing the
ESM formulation is virtually identical to the original Day
and Bradley (2001) formulation. Finally, we present a tech-
nique for optimizing the accuracy of the coarse-grain system
for very low Q models, based on matching the effective qual-
ity factor (QE). In addition, we demonstrate that using op-
timization techniques that do not employ the effective pa-
rameter QE will actually degrade (rather than improve) the
accuracy of the resulting coarse-grain system.
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Appendix

Complete Expressions for ME and QE

From equations (7) and (9) we can write

N �1 �1V x̄ x̄ xsk k k kM (x) � V 1 � � i ,E T �� � 2 2 2 2 � �M x s � 1 x s � 1k�1 k k ku

(A1)

where the element-specific unrelaxed modulus is givenMku

by equations (16) and (17). Letting

x̄ x̄ xsk k k� � 1 � and b � ,k k2 2 2 2x s � 1 x s � 1k k
(A2)

equation (A1) can be written as

N �1V � bk k kM (x) � V � i .E T � 2 2 2 2� � ��M � � b � � bk�1 k k k k ku

(A3)

Now setting

N N
V � V bk k k kA � and B � ,� �� 2 2� � 2 2�M � � b M � � bk�1 k�1k k k k k ku u

(A4)

we obtain the expression

A B
M (x) � V � i .E T� 2 2 2 2�A � B A � B (A5)

Finally, from equations (8), (A4), and (A5), we have for the
effective quality factor

N V �k k� � 2 2�M � � bk�1 k k ku
Q (x) � .E N V bk k� � 2 2�M � � bk�1 k k ku

(A6)
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