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[1] We adapt the traction-at-split-node method for spontaneous rupture simulations to
the velocity-stress staggered-grid finite difference scheme. The staggered-grid
implementation introduces both velocity and stress discontinuities via split nodes. The
staggered traction components on the fault plane are interpolated to form the traction
vector at split nodes, facilitating alignment of the vectors of sliding friction and slip
velocity. To simplify the split-node partitioning of the equations of motion, spatial
differencing is reduced from fourth to second order along the fault plane, but in the
remainder of the grid the spatial differencing scheme remains identical to conventional
spatially fourth-order three-dimensional staggered-grid schemes. The resulting staggered-
grid split node (SGSN) method has convergence rates relative to rupture-time, final-slip,
and peak-slip-velocity metrics that are very similar to the corresponding rates for both a
partly staggered split-node code (DFM) and the boundary integral method. The SGSN
method gives very accurate solutions (in the sense that errors are comparable to the
uncertainties in the reference solution) when the median resolution of the cohesive zone is
4.4 grid points. Combined with previous results for other grid types and other fault-
discontinuity approximations, the SGSN results demonstrate that accuracy in finite
difference solutions to the spontaneous rupture problem is controlled principally by the
scheme used to represent the fault discontinuity, and is relatively insensitive to the
grid geometry used to represent the continuum. The method provides an efficient and
accurate means of adding spontaneous rupture capability to velocity-stress staggered-grid
finite difference codes, while retaining the computational advantages of those codes for
problems of wave propagation in complex media.
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1. Introduction

[2] Accurate numerical simulation of the dynamic rupture
process in realistic three-dimensional models is important
to our understanding of the physics of earthquakes, and is
likely to assume increasing importance in the modeling
of strong ground motion. Suitable numerical solution tech-
niques for the spontaneous rupture problem can be built
into elastodynamic methods based upon, for example, finite
difference (FD), finite element (FE), spectral element (SE),
or boundary integral (BI) methods. Each of these numerical
methods can be implemented on any of several different
grid types, and the elastodynamic equations solved to any
specified order of accuracy. However, recent work by
Day et al. [2005] (hereafter D05) and Dalguer and Day
[2006] has shown, at least in the case of the most widely
used FD-based methods, that solution accuracy is controlled
principally by the numerical formulation of the jump con-
ditions on the fault discontinuity. In that study, neither grid
type nor order of spatial differencing in the grid is found to

have a significant effect on spontaneous-rupture solution
accuracy, but the method of approximation of the jump
conditions has a very large effect. It is likely that a similar
conclusion will hold for other solution methods such as FE
and SE.
[3] Methods which represent the fault discontinuity by

explicitly incorporating discontinuity terms at velocity
nodes in the grid are called traction-at-split-node (TSN)
methods [Andrews, 1973, 1999; Day, 1977, 1982b]. Inter-
actions between the halves of the ‘‘split nodes’’ occur
exclusively through the tractions (frictional resistance and
normal traction) acting between them, and these in turn are
controlled by the jump conditions and a friction law. The
TSN is usually implemented in schemes that (1) employ
second-order spatial differencing, and (2) locate all three
velocity components at a common set of grid vertices, with
all six stress components collocated at the corresponding
cell centroids. This description applies to the so-called
‘‘partly staggered’’ FD schemes, in the terminology of
Moczo et al. [2006], as well as to some FE schemes. The
prevalence of the TSN fault representation in methods
meeting these criteria is probably due to the ease with
which these methods permit a partition of the equations of
motion into separate parts governing each side of the fault
surface [Day et al., 2005, Appendix A].
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[4] The TSN method has not previously been applied to
model spontaneous rupture in staggered-grid 3D FD meth-
ods such as the fourth-order velocity-stress staggered
(VSSG) scheme that is widely used for elastodynamics
problems [e.g., Madariaga, 1976; Levander, 1988; Graves,
1996]. The VSSG scheme defines each component of shear
stress and particle velocity at a different grid point, and the
normal stresses share another grid position. This geometri-
cal complexity, plus the fact that the VSSG scheme is often
implemented with fourth-order differencing, inhibits, or at
least obscures, the partitioning required by the TSN method
(but note that Madariaga’s [1976] VSSG method for fixed-
rupture-velocity modeling is effectively a split-node scheme
specialized to a problem with symmetry across the fault
plane). Instead, the VSSG schemes have been adapted to
solve spontaneous rupture problems through what Dalguer
and Day [2006] called ‘‘inelastic-zone’’ models [e.g.,
Madariaga et al., 1998; Andrews, 1976a, 1999]. That is,
the fault discontinuity is represented through inelastic incre-
ments to stress components at a set of stress grid points
taken to lie on the fault plane. With this type of scheme, the
fault surface is indistinguishable from an inelastic zone with
a thickness given by the spatial step Dx (or an integral
multiple of Dx). The well-known examples of inelastic-
zone schemes are the ‘‘thick fault’’ (TF) method proposed
by Madariaga et al. [1998], and the ‘‘stress glut’’ (SG)
method first presented by Andrews [1976a] for modeling
yielding off the fault, and subsequently described by
Andrews [1999]. The inelastic-zone methods are very easy
to implement in existing VSSG wave propagation codes, as
no modification to the difference equations is required, only
modifications to the way stress is calculated from strain rate.
However, we have found [Dalguer and Day, 2004, 2006]
that the inelastic-zone TF and SG methods show much
poorer performance than does the TSN formulation. In a 3D
test, the SG inelastic-zone method achieved solutions that
are qualitatively meaningful and quantitatively reliable to
within a few percent, but full convergence is uncertain, and
SG proved to be highly inefficient computationally, relative
to the TSN approach. The TF inelastic-zone method did not
achieve qualitatively meaningful solutions to the 3D test
problem, in the sense that, for example, TF solutions
exhibited rupture-velocity fluctuations not present in the
reference solution, had a much lower average rupture
velocity, and did not match the shape of the rupture-front
stress concentration. The method proved to be sufficiently
computationally inefficient that it was not feasible to
explore convergence quantitatively.
[5] In the present paper, we propose a version of the TSN

formulation for the VSSG FD scheme. Our starting point is
the standard VSSG elastodynamic FD scheme with fourth-
order spatial differencing. We follow an approach similar to
that described in D05 to partition the difference equations
into separate sets for the two sides of the fault. However,
because of the characteristics of the VSSG scheme, some
additional steps are necessary: (1) The spatial differencing
along the fault plane is reduced to second order. (2) In
addition to splitting the fault-plane velocity nodes into plus-
and minus-side parts, those stress points that lie on the fault
plane, and at which are located stress components that are
not continuous across the fault (i.e., those that are not fault-
plane traction components) are also split into plus-side and

minus-side parts. We used the 3D, fourth-order VSSG wave
propagation code of Pitarka [1999] as our starting point.
The resulting method will be referred to as the SGSN
(staggered-grid split-node) method.
[6] The accuracy of the SGSN method is verified follow-

ing the methodology of D05. These authors performed a
detailed comparison of solutions to the Harris et al. [2004]
benchmark problem as calculated, respectively, by two
independent numerical methods, a boundary integral (BI)
method and a TSN method called DFM [Day, 1982a,
1982b; Day and Ely, 2002]. They found that the BI and
DFM methods converge, with decreasing spatial discretiza-
tion interval Dx, to a common solution, to within well-
defined tolerances, for three specific error metrics: the RMS
differences of rupture time, slip rate and final slip.
[7] We perform the assessment of the SGSN method by

using it to compute solutions to the Harris et al. [2004]
benchmark problem. Then, using the D05 numerical solu-
tion as a reference, we compute the three error metrics
proposed in that study, and examine their dependence upon
Dx. We find that the SGSN method is convergent, with the
same convergence rate (for the rupture-time metric) as the
BI and DFM methods. It is highly efficient, requiring only
about two-grid-point resolution of the rupture-front cohe-
sive zone to reach RMS rupture-time error smaller than
0.7%.

2. Fault Jump Conditions

[8] The idealization of the earthquake source rupture as a
dynamically running shear crack on a frictional interface
embedded in a linearly elastic continuum is widely accepted
as a useful idealization in earthquake physic research [e.g.,
Kostrov, 1964, 1966; Andrews, 1976a, 1976b; Das and Aki,
1977; Day, 1982a, 1982b; Fukuyama and Madariaga,
1998; Harris and Day, 1999; Dalguer et al., 2001]. The
theoretical study of this problem class is usually possible
only with computationally intensive numerical methods
that solve the elastodynamic equations of motion in the
continuum, coupling them to additional equations govern-
ing frictional sliding on the boundary representing the fault
surface. This leads to a boundary value problem in which
the shear traction that acts at the frictional interface during
rupture is conditioned to follow a constitutive law.
[9] We orient the fault by a choice of fault-normal

direction, and define negative and positive sides of the fault
such that the normal vector is directed from the former
toward the latter. Denoting the shear traction vector on the
fault (traction exerted by the positive side upon the negative
side) by t, the tangential displacement discontinuity (slip)
vector (displacement of positive side relative to negative
side) by s, their respective magnitudes by t and s, and the
frictional shear strength by tc, the fault jump conditions can
be formulated in the form given by D05 as:

tc � t � 0 ð1Þ

tc _s� t _s ¼ 0: ð2Þ

Equation (1) stipulates that the shear traction be bounded by
the (current value of) frictional strength, and equation (2)
stipulates that any nonzero velocity discontinuity be
opposed by an antiparallel traction (i.e., the negative side
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exerts traction -t on the positive side) with magnitude equal
to the frictional strength tc.
[10] The frictional shear strength tc evolves according to

some specified friction law, and may depend upon normal
stress, slip, slip velocity, and other mechanical or thermal
variables. Here we use the simple slip-weakening friction
model in the form given by Andrews [1976a, 1976b]. This
friction law, first proposed by Ida [1972], is extensively
used for shear dynamic rupture simulations [e.g., Andrews,
1976a, 1976b; Day, 1982b; Olsen et al., 1997; Fukuyama
and Madariaga, 1998; Madariaga et al., 1998; Harris and
Day, 1999; Dalguer et al., 2003a, 2003b].
[11] The frictional strength tc is assumed to be propor-

tional to normal stress sn (taken negative in compression)

tc ¼ �mf ‘ð Þsn: ð3Þ

The coefficient of friction mf (‘) depends on the slip path
length, ‘ =

R t

0
_s (t0) dt0, through the linear slip-weakening

relationship

mf ‘ð Þ ¼ ms � ms � mdð Þ‘=d0 ‘ < d0
md ‘ � d0

�
; ð4Þ

where ms and md are coefficients of static and dynamic
friction, respectively, and d0 is the critical slip-weakening
distance. Despite its limitations as a model for natural
earthquakes (as noted in, e.g., D05), this friction law
provides a suitable starting point for testing numerical
methods.
[12] The jump conditions (1)–(2) combined with the

friction law (3)–(4), define our idealized model for fault
behavior.

3. Staggered-Grid Split-Node (SGSN) Method

[13] The FD scheme solves the velocity-stress form of the
equations of elastodynamics, in which Cartesian compo-
nents of the velocity vector _u and stress tensor s are the
dependent variables:

@t _u ¼ r�1rs ð5aÞ

@ts ¼ l r � _uð ÞIþ m r _uþ _urð Þ; ð5bÞ

where l and m are the Lame constants, r is density, and I is
the identity tensor. Figure 1 shows the staggered-grid FD
geometry. The fault is an x, y plane and the fault normal is in
the z direction. Indices for _ux grid points are integer triples
( j, k, l), and indices for other velocity and stress
components are offset from this by half-integer values in
one or more directions, as shown in Figure 1. Material
constants (densities and Lame constants l and m) are
assigned at points with indices ( j, k + 1/2, l + 1/2). In the
figure, the grid points above and below the fault (which is
the central horizontal plane in the figure) constitute a quarter
of a unit cell; that is, the region depicted has extent Dx in
the fault-normal direction and Dx/2 in the fault-parallel
directions. In our notation, grid indices are denoted by
Roman subscripts, with ( j, k, l) always representing integers
(other Roman subscripts may take on half-integer or integer
values), and Greek subscripts denote Cartesian components
(x, y, or z). Where there is no ambiguity, we will sometimes
suppress the grid indices.
[14] Note (Figure 1) that, of the nine independent velocity

and stress components, six have grid locations on fault
plane: the tangential velocities ( _ux and _uy) and the stress
components sxy, sxx, syy, and szz. Of these, five (all except
szz) become discontinuous across the fault plane when slip
is permitted. To accommodate the field discontinuities,
these five variables, when they occur on the fault plane,
are therefore split into plus-side and minus-side parts
(denoted by _ux

±, _uy
±, sxy

± , sxx
± , and syy

± ) in our scheme. We
let l0 denote the l index of the fault plane, and suppress this
index when referring to split variables.
[15] In forming FD approximations to (5a) and (5b), the

time derivatives are approximated by second-order central
differences,

@t _u tð Þ 
 1=Dt _u t þDt=2ð Þ � _u t �Dt=2ð Þ½ � ð6aÞ

@ts t �Dt=2ð Þ 
 1=Dt s tð Þ � s t �Dtð Þ½ �; ð6bÞ

as in most previous work [e.g., Graves, 1996]. The density
and reciprocals of the Lame constants are evaluated at the
required grid points by linear interpolation, as in the work
by Graves [1996]. Moczo et al. [2002] have shown that

Figure 1. Staggered-grid split-node geometry, illustrated
for grid cells adjacent to the fault in the VSSG scheme. The
fault plane grid points for _ux, _uy, sxx, syy, and sxy are split
into plus-side and minus-side parts. The finite difference
equations of motion are partitioned to form separate elastic
restoring forces (R) acting on the two halves. The two
halves of a split velocity node interact only through shear
tractions (T) at that node point.
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improved accuracy is achieved in heterogeneous media by
employing local model averages at each velocity point (for
density) and stress point (for reciprocal Lame constants),
and it would be straightforward to incorporate this
refinement into our scheme as well. The present scheme
reduces to that of Moczo et al. when the model consists of
homogeneous blocks with interfaces at grid planes not
containing those grid points at which we define material
constants (one important special case in which the schemes
are equivalent is when a material-properties interface
coincides with the fault plane).

3.1. Interior Grid Points

[16] To approximate the spatial derivatives at interior
points (i.e., points not on the fault plane), we distinguish
the following four cases, in order to avoid using discontin-
uous quantities in the difference approximations to the
spatial derivatives.
[17] 1. At any point located at a distance of at least 2Dx

from the fault plane, we approximate each spatial derivative
in (5a) and (5b) with a fourth-order spatial difference
operator, denoted Dn

(4), n = x, y, z. In the following, we let
f represent an arbitrary stress or velocity component. For z
derivatives we use the approximation

@zfð Þj;k;l 
 Dx�1 D 4ð Þ
z f

� �
j;k;l

¼ Dx�1 9

8
fj;k;lþ1=2 � fj;k;l�1=2

� ��

� 1

24
fj;k;lþ3=2 � fj;k;l�3=2

� ��
; l � l0j j � 2; ð7aÞ

for the case of derivatives centered at integer values of the
indices, and similar expressions for x and y derivatives.
With substitution of appropriate half-integer indices, 7a is
also used for derivatives centered at half-integer, instead of
integer, values of the indices (i.e., with j + 1/2 in place of j,
etc). At the stipulated distance from the fault, this difference
operator acts on points confined to only one side of the fault
plane (i.e., confined to only one of the two volumes
separated by the fault plane). Therefore the split nodes are
not involved in the calculation of the derivative, and our
method reduces to a conventional staggered fourth-order 3D
elastodynamic scheme [e.g., Graves, 1996].
[18] 2. At any point located at a distance of exactly

3Dx/2 from the fault plane, we approximate each spatial
derivative in (5a) and (5b) with the same fourth-order
spatial difference operator as before, but now the differ-
ence approximation to the derivative with respect to the
z coordinate involves a value of the field variable on
the fault plane. For that fault plane value, we use the
corresponding half of the fault plane split node for that
variable. That is, z difference operators centered on the plus
sides of the fault use the plus-side split-node variable
values, for example,

@zfð Þj;k;l0þ3=2 
 Dx�1 D 4ð Þ
z f

� �
j;k;l

¼ Dx�1 9

8
fj;k;l0þ2 � fj;k;l0þ1

� ��

� 1

24
fj;k;l0þ3 � fþ

j;k

� ��
: ð7bÞ

Similarly, those centered on the minus side use minus-side
split-node values

@zfð Þj;k;l0�3=2 
 Dx�1 D 4ð Þ
z f

� �
j;k;l

¼ Dx�1 9

8
fj;k;l0�1 � fj;k;l0�2

� ��

� 1

24
f�
j;k � fj;k;l�3

� ��
: ð7b0Þ

[19] 3. At any point located at distance Dx from the
fault plane, we approximate each spatial derivative with a
second-order spatial difference, denoted Dn

(2), n = x, y, z, for
example,

@zfð Þj;k;l 
 Dx�1 D 2ð Þ
z f

� �
j;k;l

¼ Dx�1 fj;k;lþ1=2 � fj;k;l�1=2

� �
; l0 � lj j ¼ 1 ð7cÞ

(and we use corresponding second-order difference operators
for x and y derivatives, and for derivatives centered at half-
integer values of j and/or k). Again, each of these difference
operators acts on points confined to only one side of the fault
plane, and therefore does not involve the split nodes.
[20] 4. At points located at distance Dx/2 from the

fault plane, each spatial derivative is approximated by the
second-order difference operator, but using split-node
values orresponding to the appropriate side of the fault
when values at fault-plane points are required, as in the
case 2, for example,

@zfð Þj;k;l0þ1=2 
 Dx�1 D 2ð Þ
z f

� �
j;k;l0þ1=2

¼ Dx�1 fj;k;l0þ1 � fþ
j;k

� �
ð7dÞ

@zfð Þj;k;l0�1=2 
 Dx�1 D 2ð Þ
z f

� �
j;k;l0�1=2

¼ Dx�1 f�
j;k � fj;k;l0�1

� �
: ð7d0Þ

3.2. Fault Plane Slip Velocity and Shear Traction

[21] At points on the fault plane, we use second-order
difference approximations to (5a) and (5b), and partition
them into new, separate equations for the plus- and minus-
side values of the split-node variables. We begin by noting
that the second-order FD approximation to the x compo-
nents of (5a) for an ordinary (nonsplit) node is

rj;k;l
_ux t þDt=2ð Þ½ �j;k;l� _ux t �Dt=2ð Þ½ �j;k;l

Dt

� 	

¼
D 2ð Þ

x sxx tð Þ

 �

j;k;l
þ D 2ð Þ

y sxy tð Þ
h i

j;k;l
þ D 2ð Þ

z sxz tð Þ

 �

j;k;l

Dx
;

ð8Þ

where

rj;k;l ¼
1

4
rj;k�1=2;l�1=2 þ rj;kþ1=2;l�1=2

�
þrj;k�1=2;lþ1=2 þ rj;kþ1=2;lþ1=2

�
; ð9Þ
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with similar expressions (centered at j + 1/2, k + 1/2, l) for
the y component of velocity. At split nodes, we write
separate equations of the form (8) for each side of the fault,
taking into account the shear traction vector T acting at the
interface, and its initial static equilibrium value T0. To do
so, we introduce the following one-sided difference
approximations for @zsxz, applicable to the plus and minus
sides of the fault, respectively,

@zsxzð Þ�j;k 
 �
sxzð Þj;k;l0�1=2� Tx � T0

x

� �
j;k

Dx=2
: ð10Þ

Our difference equations for the split velocities _ux
± are then

r�j;k
_u�x t þDt=2ð Þ


 �
j;k
� _u�x t �Dt=2ð Þ

 �

j;k

Dt

( )

¼
D 2ð Þ

x s�
xx tð Þ


 �
j;k
þ D 2ð Þ

y s�
xy tð Þ

h i
j;k
�2 sxz tð Þ½ �j;k;l0�1=2� Tx tð Þ � T0

x


 �
j;k

n o
Dx

;

ð11Þ

where

r�j;k ¼
1

2
rj;k�1=2;l0�1=2 þ rj;kþ1=2;l0�1=2

� �
: ð12Þ

Finally, combining (11) with the analogous split-node
partitioning of the y-component equation gives

_u�n t þDt=2ð Þ

 �

m;n
¼ _u�n t �Dt=2ð Þ


 �
m;n

þDt M�
m;n

� ��1

� R�
n tð Þ


 �
m;n

�Dx2 Tn tð Þ � T0
n


 �
m;n

n o
; n ¼ x; y; ð13Þ

where

m; nð Þ ¼ j; kð Þ; n ¼ x

jþ 1=2; k þ 1=2ð Þ; n ¼ y

�
ð14Þ

M�
m;n ¼

Dx3=4ð Þ rj;k�1=2;l0�1=2 þ rj;kþ1=2;l0�1=2

� �
; n ¼ x

Dx3=4ð Þ rj;kþ1=2;l0�1=2 þ rjþ1;kþ1=2;l0�1=2

� �
; n ¼ y

8<
:

ð15Þ

R�
n


 �
m;n

¼ Dx2
1

2
D 2ð Þ

x s�
nx

� �
m;n

(
þ 1

2
D 2ð Þ

y s�
ny

� �
m;n

� snz½ �m;n;l0�1=2

)
:

ð16Þ

The slip-velocity components _sn, n = x, y, are then given by
(suppressing the node indices m, n)

_sn t þDt=2ð Þ ¼ _uþn t þDt=2ð Þ � _u�n t þDt=2ð Þ; ð17Þ

which can be integrated to obtain the slip,

sn t þDtð Þ ¼ sn tð Þ þDt _sn t þDt=2ð Þ: ð18Þ

[22] To find the slip and slip velocity, we need to evaluate
Tn in (13), such that it satisfies conditions (1)–(4). Follow-

ing D05, we define ~Tn as the n component of a ‘‘trial’’
traction, i.e., the shear traction vector that would be required
to enforce continuity of tangential velocity, _un

+ (t + Dt/2) �
_un
� (t + Dt/2) = 0 for n equal to x and y, in (13). Then the
resulting expression for ~Tn is

~Tn �
Dt�1MþM� _uþn � _u�n

� �
þM�Rþ

n �MþR�
n

Dx2 Mþ þM�ð Þ þ T0
n ;

n ¼ x; y;

ð19Þ

where all split quantities carry nodal indices (m, n)
determined by (14), and where the velocities are evaluated
at t � Dt/2, and the nodal tractions and restoring forces at t.
[23] The fault jump conditions (1) and (2), evaluated at

time t, are satisfied [D05] if the fault plane traction Tn
appearing in (13) is

Tn ¼
~Tn n ¼ x; y ~t � tc

tc
~Tn
~t

n ¼ x; y ~t > tc

8<
: ; ð20Þ

where ~t is the magnitude of the trial traction vector defined
in (19). Since the x and y components of the velocity, and
therefore of the trial traction, are defined at different grid
points, the evaluation of ~t requires interpolation,

~t2m;n ¼ ~Tn
� �2

m;n

þ
~T�n

� �
mþ1=2;nþ1=2

þ ~Tn
� �

mþ1=2;n�1=2
þ ~Tn
� �

m�1=2;nþ1=2
þ ~Tn
� �

m�1=2;n�1=2

4

" #2

;

ð21Þ

where

n ¼ y; n ¼ x

x; n ¼ y

�
: ð22Þ

[24] Note that the frictional strength, tc, in equation (20)
follows the friction law (4), which requires knowing the slip
path length ‘, obtained by time integration of _s (the
magnitude of the slip velocity vector). We evaluate nodal
values of _s, and then integrate to get ‘, at every fault-plane
velocity point, using the same interpolation procedure used
to evaluate ~t.

3.3. Split Stress Components

[25] As noted above, and shown in Figure 1, three of the
stresses components that lie on the fault plane are discon-
tinuous (sxy , syy and sxx), and are therefore partitioned into
plus-side and minus-side stresses. Increments to the sxy
stress component involve only differentiations of velocity
components taken in the x and y directions, i.e., parallel to
the fault plane, so the plus- and minus-side values of
this stress component can be calculated from the regular
(second-order) formulas, applied separately to the plus- and
minus-side velocities,

_s�
xy

� �
j;kþ1=2

¼ mj;kþ1=2;l0�1=2Dx�1 D 2ð Þ
y _u�x þ D 2ð Þ

x _u�y

� �
j;kþ1=2

ð23Þ

from which we can time-integrate (6b) to obtain sxy(t).
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[26] There is an extra complication in partitioning syy and
sxx, which is that they involve a fault-normal derivative, @z
_uz, whose ordinary second-order difference approximation
involves _uz values from both sides of the fault. To deal with
this situation, we introduce plus- and minus-side fault-
normal velocity values _uz

± at the normal-traction (szz) grid
points on the fault (we are only considering continuous
fault-normal velocity in this paper, so _uz

+ = _uz
�, but the

formalism can also accommodate discontinuous normal
velocity). Then we approximate @z _uz with separate forward
and backward differentiation formulas for the plus and
minus sides, respectively,

@z _uzð Þ�jþ1=2;k
 �
_uzð Þjþ1=2;k;l0�1=2� _u�z

� �
jþ1=2;k

h i
Dx=2

: ð24Þ

We determine the unknown _uz
± from the condition of

continuous normal traction, applied to separate plus- and
minus-side formulas for _szz. The latter are obtained by
combining (24) with second-order difference formulas for
@y _uy

± and @x _ux
±,

_szzð Þjþ1=2;k;l0
¼ 2Dx�1 l

�
jþ1=2;k þ 2m�

jþ1=2;k

� �
� � _uzð Þjþ1=2;k;l0�1=2� _u�z

� �
jþ1=2;k

h i
þ l

�
jþ1=2;k D 2ð Þ

x _u�x þ D 2ð Þ
y _u�y

� �
jþ1=2;k

; ð25Þ

where

m�
jþ1=2;k ¼ 4 m�1

j;kþ1=2;l�1=2 þ m�1
jþ1;kþ1=2;l�1=2

�
þm�1

j;k�1=2;l�1=2 þ m�1
jþ1;k�1=2;l�1=2

��1

ð26Þ

l
�
jþ1=2;k ¼ 4 l�1

j;kþ1=2;l�1=2 þ l�1
jþ1;kþ1=2;l�1=2

�
þl�1

j;k�1=2;l�1=2 þ l�1
jþ1;k�1=2;l�1=2

��1

: ð27Þ

Note that (25) represents two equations, one each for the
plus and minus sides (with the same left-hand side, due to
continuity of normal traction on the fault). In our case, we
restrict consideration to continuous normal velocity (no
fault separation), and solve (25) together with the condition
_uz
+ = _uz

�. The result is

_uþz
� �

jþ1=2;k
¼ _u�z

� �
jþ1=2;k

¼
Aþ _uzð Þjþ1=2;k;l0þ1=2þA� _uzð Þjþ1=2;k;l0�1=2�B� þ Bþ

Aþ þ A� ;

ð28Þ

where

A� ¼ 2

Dx
l
�
jþ1=2;k þ 2m�

jþ1=2;k

� �

B� ¼ l
�
jþ1=2;k

D 2ð Þ
x _u�x þ D 2ð Þ

y _u�y

� �
jþ1=2;k

Dx

ð29Þ

and substitution of (28) into (25) gives szz.

[27] Finally, with the aid of (28), we calculate _sxx
± and _syy

±

by formulas analogous to (25),

_s�
xx

� �
jþ1=2;k

¼ l
�
jþ1=2;k þ 2m�

jþ1=2;k

� �
Dx�1 D 2ð Þ

x _u�x

� �
jþ1=2;k

þ l
�
jþ1=2;kDx�1 D 2ð Þ

y _u�y

� �
jþ1=2;k

�

þ2 � _uzð Þjþ1=2;k;l0�1=2� _u�z
� �

jþ1=2;k

h i	
ð30Þ

_s�
yy

� �
jþ1=2;k

¼ l
�
jþ1=2;k þ 2m�

jþ1=2;k

� �
Dx�1 D 2ð Þ

y _u�y

� �
jþ1=2;k

þ l
�
jþ1=2;kDx�1 D 2ð Þ

x _u�x

� �
jþ1=2;k

�

þ2 � _uzð Þjþ1=2;k;l0�1=2� _u�z
� �

jþ1=2;k

h i	
: ð31Þ

3.4. Artificial Viscous Damping

[28] We introduce viscous damping into the equations of
motion, as a device to suppresses short-wavelength oscil-
lations arising from the numerical dispersion characteristic
low-order difference approximations [Day, 1982b; Day and
Ely, 2002; Day et al., 2005]. The damping is artificial, and is
intended to regularize the numerical solution of the elasto-
dynamic problem, rather than to represent a physical damp-
ing. As in D05, equations (A8) and (A18), we add terms to
the elastodynamic equations that are proportional to the
strain-rate components, leading to damping stresses of
Kelvin-Voigt form. However, in contrast to our previous
approach (in which the damping was used throughout the
volume), we include this term only in the equations of
motion (13) for the split nodes (a simplification introduced
to minimize computer memory requirements in the current
serial-code implementation). The modified expression for
R± with the viscous damping terms is

R�
n


 �
m;n

¼ Dx2
1

2
D 2ð Þ

x s�
nx

� �
m;n

þ 1

2
D 2ð Þ

y s�
ny

� �
m;n

� snz½ �m;n;l0�1=2

( )

þDthsDx2
1

2
D 2ð Þ

x _s�
nx

� �
m;n

(

þ 1

2
D 2ð Þ

y _s�
ny

� �
m;n

� _snz½ �m;n;l0�1=2

)
; ð32Þ

where n = x, y, (m, n) is defined as in (14), the stress rates
are evaluated at t � Dt/2, and the stresses and restoring
forces at t. The damping parameter is hs, and the subscript s
is appended to indicate that it is used at the split nodes only,
and to differentiate it from the damping parameter h
(unsubscripted) in D05 (numerical values of hs and h are not
comparable, since the latter applies throughout the volume
and the former only in cells adjacent to split nodes). The
introduction of the time stepDt as a factor in (32) makes the
damping parameter hs dimensionless. In our numerical
simulations, Dt is proportional to the grid interval Dx,
because Dt is constrained by the stability limit, i.e., Dt �
CFL Dx/a, where CFL is the Courant-Friedrich-Lewy
number and a is the P wave velocity (CFL = 0.396 for the
SGSN tests in this paper). The result is that the absorption-
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wavelength spectrum for constant hs scales in proportion to
the grid interval (D05), ensuring that wavelengths near the
grid Nyquist limit are selectively damped.

4. Numerical Test

[29] We test the SGSN approach by solving a three-
dimensional (3D) problem of spontaneous rupture propaga-
tion for a planar fault embedded in a uniform infinite elastic
isotropic space. The formulation and parameters of the test
case correspond to Version 3 of the Southern California
Earthquake Center (SCEC) benchmark problem [Harris et
al., 2004]. This test was selected because D05 solved this
problem numerically by two difference methods, the BI
method and the so-called DFM implementation of the TSN
method [Day, 1982a, 1982b; Day and Ely, 2002]. They
examined numerical results for a range of Dx values and
found that the BI and DFM computations converged to a
common solution, within well-defined tolerances which
they interpreted as approximate error bounds on the solu-
tion. This permits us to use the highest-resolution DFM
solution as a reference solution for assessing the accuracy of
the SGSN method.
[30] The problem geometry is shown in Figure 2. We take

the fault plane to be the xy plane. The shear prestress is
aligned with the x axis, and the origin of the coordinate

system is located in the middle of the fault, as shown in
Figure 2. The fault and prestress geometries are such that
the x and y axes are axes of symmetry (or antisymmetry) for
the fault slip and traction components. As a result, the xz
plane undergoes purely in-plane motion, and the yz plane
purely anti-plane motion.
[31] Rupture is allowed within a fault area that extends

30 km in the x direction and 15 km in the y direction. A
homogeneous medium is assumed, with a P wave velocity
of 6000 m/s, S wave velocity of 3464 m/s, and density of
2670 kg/m3. The distributions of the initial stresses and
frictional parameters on the fault are specified in Table 1.
The nucleation occurs in 3 km � 3 km square area that is
centered on the fault, as shown in Figure 2. The rupture
initiates because the initial shear stress in the nucleation
patch is set to be slightly (0.44%) higher than the initial
static yield stress in that patch. Then the rupture propagates
spontaneously through the fault area, following the linear
slip-weakening fracture criterion (3)–(4).

4.1. Metrics

[32] In the work of Dalguer and Day [2006], the same
test problem was used to assess alternative methods (Stress
Glut and Thick Fault, respectively) for representing the
fault. For consistency with that study, and with D05, we
apply here the same three global metrics used for quantita-
tive assessment of solution accuracy in those two papers.
These are: (1) root mean square average over the fault plane
of the rupture time differences between solutions, where
rupture time is defined as the time at which slip velocity
first exceeds 1 mm/s; (2) root mean square average, over the
x and y axes, of the differences in final slip between
solutions, and (3) root mean square average over the
x and y axes of the differences in peak value of slip velocity.
In each case, we calculate the metric of an SGSN solution
with respect to the DFM solution calculated with Dx =
0.05 km (see D05), which is denoted solution DFM0.05.

4.2. Sensitivity to Damping Parameter

[33] As noted previously, artificial viscosity in the SGSN
method is applied somewhat differently than in DFM, and
the damping parameters in the two methods are not equiv-
alent. Therefore we begin by examining the sensitivity of
the solution to the damping parameter hs. We solve the test
problem with different grid intervals (Dx = 0.1, 0.15, 0.2,
0.25, 0.3, 0.375, 0.5 and 0.75 km) and a range of values of
hs, and then calculate the rupture-time metric for each case
(i.e., for each hs, Dx pair), relative to the reference solution
DFM0.05.

Table 1. Dynamic Stress Parameters for Spontaneous Dynamic Rupture Simulation

Parameters

Within Fault Area of 30 km � 15 km

Outside Fault AreaNucleation Outside Nucleation

Initial shear stress (t0), MPa 81.6 70.0 70.0
Initial normal stress (�sn), MPa 120.0 120.0 120.0
Static friction coefficient (ms) 0.677 0.677 infinite
Dynamic friction coefficient (md) 0.525 0.525 0.525
Static yielding stress (tcs = �ms *sn), MPa 81.24 81.24 infinite
Dynamic yielding stress (tcd = �md *sn), MPa 63.0 63.0 63.0
Dynamic stress drop (Dt = t0 � tcd), MPa 18.6 7.0 7.0
Strength excess (MPa) (tcs � t0), MPa �0.36 11.24 infinite
Critical slip distance, m d0 0.40 0.40 0.40

Figure 2. Fault model [from Harris et al., 2004] for
testing dynamic rupture simulations. The square in the
center is the nucleation area. The triangles are the receivers
at which we compare time-histories of slip, slip rate, and
shear stress. Relative to an origin at the center of the fault,
the receiver PI has y coordinate 0 and x coordinate 7.5,
and the receiver PA has x coordinate 0 and y coordinate
6.0 km. The stress parameters are specified in Table 1.
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[34] Figure 3 shows curves of RMS rupture time misfit
and RMS peak slip velocity misfit, as a function of the
damping parameter hs, for each grid interval. Dashed lines
correspond to the relatively low-resolution solutions (Dx �
0.375 km), in which the minimum RMS rupture time misfit
is larger than 1% and peak slip velocity misfit is larger than
25%, whereas solid lines correspond to solutions (Dx �
0.3 km) with minimum RMS rupture time misfit less than
1% and peak slip velocity less than 25%. We distinguish
these two classes in Figure 3a to display the fact that the
Dx � 0.3 km cases have settled into a systematic behavior
of monotonic decrease in the rupture time misfit with
decreasing Dx, for all values of hs (including zero). The
misfit curves for this group of higher-resolution solutions
also have their minima at approximately the same damping
value hs � 0.3, and have very weak dependence on hs near
that minimum. Moreover, both dashed- and solid-curve
groups show monotonic decrease in rupture time misfit,
as a function of Dx, for all hs � �0.2. The sensitivity of the
rupture time solutions to hs diminishes with reduced grid
interval: the best-resolved case in Figure 3 (with Dx =
0.1 km) has minimum misfit of �0.25%, and misfit remains
below 0.6% through the interval 0.2 � hs � 0.4 (and below
1.6% even for the zero-damping case). The low sensitivity
to the damping parameter in the rupture time is consistent
with the results obtained by D05 using the DFM method.
However, as shown in Figure 3b, the peak slip velocity
misfit increases with hs, with minimum misfit when hs = 0.
Therefore nonzero hs does not reduce the error of the peak
slip velocity, as it does for the rupture time error. On the
other hand, not reflected in the peak slip velocity metric is
the additional beneficial effect of damping in reducing or
eliminating spurious oscillations in the slip velocity time
histories (time histories are discussed below).
[35] Taken together, the results in Figures 3a and 3b

indicate that the SGSN method is convergent even with

hs = 0, but that convergence is greatly accelerated by the use
of values of damping in roughly the range 0.2 � hs � 0.4.
For example, the rupture-time misfit level of 1.6% achieved
in the undamped solution for Dx = 0.1 km is achieved by
the damped solution (for any damping value in the interval
0.2 � hs � 0.4) when Dx is three times as large. The results
also indicate a preferred value of hs � 0.3 (and we again
emphasis that the viscosity is applied differently in SGSN
than in DFM, for which D05 found a preferred value of a
different viscosity parameter, h, of �0.1).

4.3. Grid Dependence of Solutions

[36] We next examine SGSN solutions computed with the
preferred artificial-viscosity parameter value hs � 0.3. We
assess their grid-size dependence, using the three solution
metrics introduced previously, for Dx 0.1 km � Dx �
0.75 km, again calculating the metrics relative to the DFM
reference solution with Dx = 0.05 km. For comparison, we
also show the grid-size dependence of the DFM solutions.
We name the solutions using the same convention used in
D05: the calculations for Dx = 0.1 km, for example, are
denoted by DFM0.1 and SGSN0.1, respectively, for the
DFM and SGSN methods; and SGSN0.15 denotes the
SGSN calculation with Dx = 0.15 km, with similar naming
for the other cases. Grid intervals and time steps for all the
solutions are shown in Table 2.
[37] The cohesive zone is the portion of the fault plane

behind the crack tip where the shear stress decreases from
its static value to its dynamic value and slip path-length ‘
satisfies 0 � ‘ � d0 [e.g., Ida, 1972]. In the cohesive zone,
shear stress and slip rate vary rapidly, and proper numerical
resolution of those changes is crucial for capturing the
maximum slip rates and rupture propagation speeds. To
relate numerical accuracy to the degree to which the
cohesive zone is resolved, we express the grid-size depen-
dence of the solution in terms of the dimensionless ratio Nc

Figure 3. (a) RMS rupture time misfit as a function of the damping parameter hs for each grid
interval Dx. Time differences are RMS averages over the fault plane. (b) RMS peak slip rate differences
as a function of the damping parameter hs for each grid interval Dx. In both figure s, the dashed lines
correspond to lower resolution solutions (Dx � 0.375 km) and solid lines correspond to higher-resolution
solutions Dx � 0.3 km.
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introduced by D05, where Nc is the ratio of the width of the
cohesive zone, L, to the grid interval Dx,

Nc ¼ L=Dx: ð33Þ

This ratio provides a nondimensional characterization of the
resolution of a given numerical solution. As discussed at
length in D05, Nc is a local measure of resolution, because
L varies as the rupture propagates. Here we use the median
value of Nc over the x axis (in-plane), denoted by Nc, as a
global measure of resolution (the choice of the x axis
median is discussed in D05). The median cohesive zone
size for this problem (as obtained from the reference
solution DFM0.05) is 0.44 km (D05), so Nc = 0.44/Dx.
[38] The RMS rupture-time misfits are shown in Figure 4.

Open circles correspond to the SGSN solutions, and solid
circles to the DFM solutions. Note that the abscissa is
denoted in two different ways on Figure 4. On the bottom,
the grid size is given. On the top, we show the
corresponding median cohesive-zone resolution parameter
Nc.
[39] Note in Figure 4 that the rupture-time differences for

SGSN show a bilinear scaling with the grid size. The first
scaling line corresponds to solutions with Dx � 0.3 and the
second line for Dx > 0.3. The transition between these two
scaling lines occurs between Dx = 0.3 and Dx = 0.4,
corresponding to a grid interval slightly less than the median
cohesive-zone width (L = 0.44 km). In the second line, for
Dx�0.4, the RMS time differences exceed 1.5% and the
dependence upon Dx appear to follow a power law in the
grid size, with estimated exponent 2.9. As observed in
Figure 4, this second line is practically parallel to the
corresponding one for DFM (exponent 2.96, 90% confi-
dence interval 2.77–3.15). The smaller multiplicative factor
in the SGSN power law (for the coarser grids, Dx � 0.4),
relative to that of DFM, may be related to the reduced
numerical dispersion due to use of fourth-order spatial
difference operators in SGSN (DFM uses second-order
spatial differences everywhere). However, the SGSN differ-
ence operators are reduced to second order along the fault,
and it is unclear how much the use of fourth-order differenc-
ing away from the fault influences rupture propagation. The

other scaling line, for Dx � 0.3, represents solutions with
RMS time differences less than 1%. In this regime, the
dependence upon Dx appears to be linear (exponent 1.1),
and the misfit is comparable to the SGSN time step size.
The relationship to the step size appears to be indirect,
however: further numerical experiments using a small, fixed
time step (i.e., Dt not proportional to Dx) give almost
identical results. It appears that the power law transition
for the RMS rupture-time misfit represents a precision limit
proportional to the rupture transit time across one grid
interval.

Figure 4. Differences in time of rupture, relative to
reference solution, shown as a function of grid interval Dx.
Differences are RMS averages over the fault plane. Open
circles are SGSN solutions and solid circles are DFM
solutions calculated by D05. All the solutions are relative to
DFM0.05 (the smallest grid-interval DFM case). The dashed
lines show the (approximate) dependence of time stepDt on
Dx. The upper axis characterizes the calculations by their
characteristic Nc values, where Nc is median cohesive zone
width in the in-plane direction divided by Dx.

Table 2. Test Problem Calculations

Calculation Name Solution Method Grid Size Dx, km Time Step Dt, s Median Resolution Nc

Rupture Time Misfit

RMS, % MAX, %

SGSN0.075 SGSN 0.075 0.005 5.9 0.22 0.78
SGSN 0.1 SGSN 0.1 0.0066 4.4 0.24 1.35
SGSN0.15 SGSN 0.15 0.0099 2.9 0.40 1.56
SGSN 0.2 SGSN 0.2 0.013 2.2 0.54 1.77
SGSN0.25 SGSN 0.25 0.016 1.8 0.66 2.0
SGSN0.3 SGSN 0.3 0.02 1.5 0.83 3.13
SGSN0.375 SGSN 0.375 0.025 1.2 1.58 5.45
SGSN0.5 SGSN 0.5 0.033 0.9 3.67 10.33
SGSN0.75 SGSN 0.75 0.05 0.6 10.52 22.80
DFM0.05 DFM 0.05 0.005 8.8 0.0 0.0
DFM0.075 DFM 0.075 0.00625 5.9 0.15 0.50
DFM0.1 DFM 0.1 0.008 4.4 0.31 1.30
DFM0.15 DFM 0.15 0.0125 2.9 1.26 3.57
DFM0.2 DFM 0.2 0.016 2.2 2.72 6.41
DFM0.25 DFM 0.25 0.015 1.8 5.02 10.1
DFM0.3 DFM 0.3 0.020 1.5 8.50 15.55
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[40] A possible interpretation is that the SGSN method
has underlying convergence rate �3; that is, it has this
convergence rate for problems with a sufficient degree of
smoothness in the field variables. However, the discontin-
uous derivative in the slip-weakening curve used in this
study is known to result in a nonsmooth stress field, and this

nonsmoothness would be expected to result in an order of
accuracy lower than the nominal one that applies to smooth
fields [e.g., Day et al., 2005; Kaneko et al., 2006]. The
result may be timing errors of the order of the rupture transit
time, truncating the Dx3 asymptote. Accepting that view,
SGSN has the same convergence rate (relative to the rupture

Figure 5. Contour plot of the rupture front for the spontaneous-rupture test problem, for each SGSN
solution (dashed line), compared with the reference (DFM0.05) solution (solid line). The grid size of the
SGSN solutions is specified on the upper side of each plot.
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time metric) as DFM; and, moreover, this rate is also
indistinguishable from the convergence rate we determined
in D05 for the BI method: all three methods share (within
statistical uncertainty in the exponent estimates) the con-
vergence rate of �3. In any event, the observation is that
SGSN follows the Dx3 asymptote until it achieves RMS
rupture-time precision approximately equal to one third the
rupture transit time (which happens to correspond approx-
imately to the maximum Dt permissible for accurate com-
putation, Dt � CFL Dx/a), and it achieves that level in the
test problem for Dx�0.3, corresponding to Nc 
 1.5.
[41] One might suspect that the rupture-time metric gives

an exaggerated misfit estimate by mainly measuring a
simple time shift due to nucleation advances or delays
(instead of registering primarily the more physically inter-
esting misfits in rupture velocity). We checked this by
considering the extreme case. The relative time shift be-
tween test solution and reference solution that minimizes
their RMS misfit is that which makes their mean rupture
times equal. We recomputed these minimized rupture-time
metrics and found that the change was small in all cases,
and imperceptible for the high-resolution models (dx < =
0.3 km). Therefore simple nucleation delay does not con-
tribute substantially to the total rupture time error. This was
also shown (for a different set of test simulations) by
Dalguer and Day [2006].
[42] The maximum difference in rupture time between

DFM0.05 and SGSN0.1 is 0.0483 s, and the RMS value
(averaging over the fault plane) of the difference is 0.0086 s.
On the basis of the average rupture time on the fault of
about 3.57 s, these maximum and RMS difference are
respectively 1.35% and 0.24%. This level of precision is
within our uncertainty estimate for the reference solution
itself, based upon the precision of agreement achieved
between the BI and DFM methods in D05. The maximum

and RMS differences between DFM0.05 and SGSN0.3 are
0.11 s (3%) and 0.029 s (0.8%), respectively (see Table 2).
[43] These quantitative results for the rupture-time metric

(Figure 4) are reflected qualitatively in Figure 5, where
contours of rupture time of all the SGSN solutions (dashed
curves) are compared with the DFM0.05 solution (solid
curves). The computed evolution of the rupture front of
each SGSN solution with Dx�0.3 km (Nc � �1.5) is
virtually identical to that of the DFM0.05 solution. This
good level of agreement is maintained at all distances and
directions from the nucleation patch.
[44] Figure 6 shows the two additional measures of grid-

size dependence that we evaluate: RMS misfits of final slip
and maximum slip velocity, respectively, again relative to
reference solution DFM0.05. Diamonds (solid for DFM,
open for SGSN) denote values of the final-slip metric,
circles (also solid for DFM, open for SGSN) the
corresponding values for the peak slip-velocity metric. Each
of these metrics appears to follow a single scaling line,
albeit with more scatter than in the rupture-time case. The
slip misfits for both DFM and SGSN have steeper slopes
(1.57 and 1.63, respectively) than do the peak velocity
misfits (1.17 and 0.7, respectively). In general, then, there
is little difference between the methods for the final-slip and
peak-slip-velocity metrics: both methods have roughly
power-law behavior, with exponents between 1 and 2, with
at most very small offsets between their asymptotes for a
given metric. The RMS peak slip velocity difference falls to
�9% or less for Dx � 0.1 km (Nc � 4.4) for DFM and
SGSN. The final slip difference falls to �1% or below for
Dx � 0.1 km (Nc � 4.4) for DFM, and for Dx � 0.15 km
(Nc � 3) for SGSN.

4.4. Waveform Comparison

[45] Finally, we examine the time histories of the shear
stress, slip and slip rate from the test problem solutions,
with DFM0.05 again as reference. These comparisons focus
on two cases: (1) the highest-resolution SGSN solution,
SGSN0.1, and (2) the lowest resolution SGSN case that has
reached the slope 1 asymptote of the rupture-time metric,
SGSN0.3 (since this case has rupture-time precision of the
order of a single time step Dt). SGSN0.1 has median
resolution Nc = 4.4, and SGSN0.3 has median resolution
a factor of 3 lower, Nc = 1.5. Figure 7 shows the time
histories of the stress, slip and slip rate of the SGSN0.1 and
SGSN0.3 compared with the DFM0.05 at the two fault-
plane points marked in Figure 2, one each on the in-plane
(point PI) and anti-plane (point PA) axes, respectively. The
time histories presented in Figure 7 are the direct result of
our simulations, with no additional filtering applied.
[46] As seen in Figure 7, the time histories of SGSN0.1

(light solid curves) and reference solution DFM0.05 (heavy
solid curves) solutions are nearly identical. The two cannot
be distinguished in the plots, except in the magnified insets,
where small differences can be discerned (but note the
nearly perfect coincidence of the shear-stress curves for
these two cases in the PI inset). Note that the slip-rate
histories of SGSN0.1 are nearly free of oscillations, as are
those for DFM0.05.
[47] The time histories for the lower resolution SGSN0.3

solution (dashed curves in Figure 7) differ significantly
from the reference solution, despite SGSN0.3 having cap-

Figure 6. Differences in final slip (diamonds) and peak
slip velocity (circles), relative to reference solution
(DFM0.05), shown as a function of grid interval Dx.
Differences are RMS averages over the x and y axes of the
fault plane. Open symbols are SGSN solutions and solid
symbols are DFM solutions calculated by D05.
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tured the rupture times quite accurately. SGSN0.3 shows a
small discrepancy in displacement, commencing at the time
that diffractions from the locked edges of the fault (‘‘stop-
ping phases’’) are expected, most noticeably at PA, which is
close to the upper edge. This discrepancy is the expected
consequence of the ambiguity of order Dx in characterizing
the dimensions of a discretized representation of a fault
with abrupt termination, as is the case in this test problem.
That is, as shown in Figure 8, the fault (in our convention)
is defined as the area where rupture is allowed, so the
nominal border of the fault (kept at the same location for all
the solutions) has nodes in which slip occurs. The distance
between this nominal border and the first fault-plane node
point where no slip occurs is one grid interval Dx, inducing
an order-Dx ambiguity in the stopping-phase delays. We
have not pursued numerical strategies to mitigate this
problem, since displacements are already highly accurate
compared with the velocity pulses, and, as discussed below,
it is principally the latter that appear to set the limits to
solution quality. Furthermore, in problems in which rupture
termination is more gradual (and perhaps more realistic),
the rupture-length ambiguity is likely to be even less
important.

[48] The SGSN0.3 slip velocities show notable discrep-
ancies compared with those of the high-resolution solu-
tions. At PA, for example, while the SGSN0.3 peak slip
rate agrees well with the other two solutions, its time
history has spurious oscillations, with fluctuation ampli-

Figure 7. Time histories at the two fault plane points marked in Figure 2. PI is on the in-plane (x) axis,
and PA is on the anti-plane (y) axis. Shear stress, slip, and slip velocity are shown, for solutions SGSN0.1,
SGSN0.3 compared with the reference solution (DFM0.05) calculated in D05.

Figure 8. Schematic representation of the fault borders in
the numerical simulation.
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tude of about 20% of the peak velocity. At PI, SGSN0.3
has similar, but somewhat smaller, oscillations (about 5%
of peak velocity). The oscillations in the slip-velocity
pulses are entirely consistent with expectations, given the
very low resolution of SGSN0.3, for which the median
cohesive-zone resolution is Nc = 1.5; i.e., less than two
grid intervals define the cohesive zone. The narrow
cohesive zone permits an abrupt stress drop at the rupture
front, generating stress waves of sufficiently short wave-
length that they are strongly numerically dispersed by the
grid. The dominant frequency of the slip-velocity oscilla-
tions of SGSN0.3 at PA, for example, corresponds to an S
wavelength of less than 3Dx. Even under the most
optimistic assumptions (e.g., assuming that numerical
dispersion is comparable to that expected for a uniformly
fourth-order difference scheme), wavelengths this short are
subject to severe numerical dispersion. When we low-pass
filter the slip rates of the three solutions, with a 2-Hz
corner frequency, corresponding to S wavelength �6Dx,
as shown in Figure 9, the slip-velocity time histories are
nearly identical among the three solutions. The SGSN0.1
solution and DFM0.05 reference solution cannot be dis-
tinguished in Figure 9, and only significant difference
between them and lower resolution SGSN0.3 is the small
shift in stopping phases due to the fault-length ambiguity
discussed above.

5. Discussion

[49] We have shown that the traction-at-split-node method
for representing a fault plane in spontaneous rupture simu-
lations can be effectively adapted to the staggered-grid finite
difference scheme. Our staggered-grid split-node (SGSN)
method partitions the discrete equations of motion in a
manner very similar to that of our partly staggered split-
node method, DFM [Day, 1982a, 1982b; Day and Ely, 2002;
Day et al., 2005], but with the addition of two new elements.
First, in addition to splitting the tangential velocity compo-

nents, the method also splits the three discontinuous stress
components. Second, the method interpolates the staggered
‘‘trial’’ traction components to form the traction vector at
split nodes, as required to align the vectors of sliding friction
and slip velocity. To simplify the partitioning, spatial
differencing was reduced from fourth to second order along
the fault plane, but in the remainder of the grid the spatial
differencing scheme remains identical to conventional spa-
tially fourth-order 3D staggered-grid schemes [e.g., Graves,
1996].
[50] With cohesive-zone resolution of Nc = 4.4, SGSN is

accurate relative to the reference solution DFM0.05, to
within the uncertainty in the latter (as judged by the
comparison of DFM with BI solutions done in D05), for
both rupture-time and final-slip metrics. At this resolution
of Nc = 4.4, the SGSN peak slip-velocity misfit is still about
a factor of 3 higher than the reference-solution uncertainty
for that metric (though only about 50% higher than the
DFM solution done with the same resolution value of
Nc = 4.4). Unfortunately, we are unable to calculate
SGSN solutions with Dx = 0.05, as we were able to do with
DFM, as the latter is a parallel code, and our current SGSN
implementation is not.
[51] The SGSN and the DFM methods have very similar

convergence properties, as indicated by the similarities of the
corresponding SGSN and DFM slopes in Figures 4 and 6.
These asymptotic slopes are also very similar to those
obtained for BI solutions in D05. The most notable differ-
ence is the offset, by a factor of �3, between the respective
Dx3 rupture-time asymptotes for SGSN and DFM (Figure 4).
That is, until its one time step threshold is approached
(at about Nc = 1.5), SGSN achieves a given tolerance level
in RMS rupture time with Nc about a factor of 3.0 lower than
that required by DFM to achieve the same tolerance level.
Remarkably, the SGSN rupture-time asymptote even has a
favorable offset (a factor of �1.5) relative to the BI rupture-
time asymptote, given in D05. This latter result was
unexpected, because the BI method only discretizes the

Figure 9. Slip velocity time histories for solutions SGSN0.1 and SGSN0.3, compared with the
reference solution (DFM0.05) calculated in D05, at the two fault plane points marked in Figure 2. PI is on
the in-plane (x) axis, and PA is on the anti-plane (y) axis. The time histories in this figure (unlike those in
Figure 7) have been low-pass filtered, with corner frequency at 2 Hz.
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fault plane, incorporating the continuum response through
an exact Green’s function. Numerical dispersion in BI thus
arises only from the time discretization, with no dispersion
in the limit of very small Dtb/Dx (where b is the S wave
speed), and dispersion is therefore likely less severe in BI
than in volume discretization methods like DFM and SGSN.
On the other hand, SGSN does not enjoy the same advan-
tage (over either DFM or BI) for the final-slip and peak-slip-
velocity metrics that it does for the rupture time metric.
Furthermore, we made considerable effort to regularize the
SGSN numerical solution by optimizing the choice of
damping parameter hs, which probably accelerated the
approach of SGSN to asymptotic behavior. Finally, the
exceptionally good performance of SGSN on the rupture
time metric (i.e., high accuracy with Nc as small as �1.5),
would probably not carry over to friction laws with strong
velocity dependence, since with Nc 
 1.5 the slip-velocity
time histories still contain significant spurious oscillations.
Thus, on balance, we conclude that SGSN and DFM are
highly comparable in their performance.
[52] The SGSN method, like DFM, is (in its present form)

limited to problems in which faults are parallel to a
coordinate plane. Despite this geometrical limitation, the
method may find some important applications. These would
include theoretical studies demanding high accuracy and
efficiency for simple fault geometries, such as theoretical
studies of rupture under complex friction laws, perhaps
including dynamic weakening processes such as thermal
pressurization. The method also provides a straightforward
means for adding spontaneous rupture capability to strong
motion simulations for complex 3D geologic environments:
SGSN is based upon the fourth-order staggered-grid method
that has long proven to be among the most practical and
efficient methods for such simulations [e.g., Graves, 1998;
Olsen et al., 1997, 2003, 2006; Pitarka et al., 1998; Wald
and Graves, 1998]. The SGSN method provides an efficient
and accurate means of adding spontaneous rupture capabil-
ity to those schemes while retaining their other computa-
tional advantages.
[53] Apart from demonstrating the method’s potential

utility, the SGSN results have an additional implication.
Dalguer and Day [2006] tested two methods that have
previously been proposed for adding spontaneous rupture
capability to staggered-grid finite difference codes. Both of
these previous methods approximate the fault as a finite-
thickness inelastic zone. Dalguer and Day found that both
methods had relatively poor convergence properties com-
pared with the split-node DFM method. One of the
inelastic-zone methods could not even achieve qualitatively
meaningful solutions to the 3D test problem with any
grids intervals that were computationally feasible. The
second inelastic-zone method achieved test-problem solu-
tions that were qualitatively meaningful, and quantitatively
reliable to within a few percent, but the grid-interval
requirements for accuracy rendered the method computa-
tionally inefficient relative to the DFM split-node approach
with which it was compared. This raised the question of
whether the poor performance reflected principally the
limitations of the inelastic-zone fault representation
schemes, or reflected an inherent unsuitability of the
staggered-grid geometry to the spontaneous rupture prob-
lem. The results in this paper provide an answer to this

question: The similarity of results between SGSN and
DFM (which also uses the split-node fault representation,
but has the quite different partly staggered-grid geometry)
demonstrates that accuracy in finite difference solutions to
the spontaneous rupture problem is controlled principally
by the scheme used to represent the fault discontinuity,
and is relatively insensitive to the grid geometry used to
represent the continuum.
[54] Finally, there are possible generalizations of the

SGSN method that might become practical in the future.
For example, the use of a staggered grid in elastodynamics
calculations is not fundamentally limited to Cartesian grid
geometries, and the SGSN approach would be equally
applicable to a non-Cartesian staggered-grid code, should
one be developed. Such a method would accommodate
nonplanar faults. Nor is there anything fundamental about
our decision to reduce the difference operators to second
order at the fault. An alternative would be to use separate,
one-sided fourth-order differences on each side of the fault.
Like the current method, such a scheme would also partition
naturally into separate difference equations for the two sides
of each split node.

6. Conclusions

[55] The traction-at-split-node method for spontaneous
rupture simulations has been successfully adapted to the
velocity-stress staggered-grid finite difference scheme. Pre-
vious implementations of split nodes had been restricted to
unstaggered or partly staggered grids, where node splitting
was used only to introduce discontinuous velocities. In
contrast, the staggered-grid implementation introduces both
velocity and stress discontinuities via split nodes. The
resulting method, SGSN, appears to be convergent, with
convergence rates relative to rupture-time, final-slip, and
peak-slip-velocity metrics that are very similar to the
corresponding rates we have found (see D05) for both the
partly staggered split-node method DFM and the boundary
integral method. The SGSN method gives very accurate
solutions (in the sense that errors are comparable to the
uncertainties in the reference solution) when the median
resolution of the cohesive zone is 4.4 grid points (Nc 
 4.4).
Combined with results for other grid types (D05) and other
fault-discontinuity approximations [Dalguer and Day,
2006], the SGSN results demonstrate that accuracy in finite
difference solutions to the spontaneous rupture problem is
controlled principally by the scheme used to represent the
fault discontinuity, and is relatively insensitive to the grid
geometry used to represent the continuum. The method
provides an efficient and accurate means of adding sponta-
neous rupture capability to velocity-stress staggered-grid
finite difference codes, while retaining the computational
advantages of those codes for problems of wave propaga-
tion in complex media.
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