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S U M M A R Y
We present a numerical method to simulate spontaneous shear crack propagation within a
heterogeneous, 3-D, viscoelastic medium. Wave motions are computed on a logically rectan-
gular hexahedral mesh, using the generalized finite-difference method of Support Operators
(SOM). This approach enables modelling of non-planar surfaces and non-planar fault rup-
tures. Our implementation, the Support Operator Rupture Dynamics (SORD) code, is highly
scalable, enabling large-scale, multiprocessors calculations. The fault surface is modelled by
coupled double nodes, where rupture occurs as dictated by the local stress conditions and
a frictional failure law. The method successfully performs test problems developed for the
Southern California Earthquake Center (SCEC)/U.S. Geological Survey (USGS) dynamic
earthquake rupture code validation exercise, showing good agreement with semi-analytical
boundary integral method results. We undertake further dynamic rupture tests to quantify nu-
merical errors introduced by shear deformations to the hexahedral mesh. We generate a family
of meshes distorted by simple shearing, in the along-strike direction, up to a maximum of
73◦. For SCEC/USGS validation problem number 3, grid-induced errors increase with mesh
shear angle, with the logarithm of error approximately proportional to angle over the range
tested. At 73◦, rms misfits are about 10 per cent for peak slip rate, and 0.5 per cent for both
rupture time and total slip, indicating that the method (which, up to now, we have applied
mainly to near-vertical strike-slip faulting) is also capable of handling geometries appropriate
to low-angle surface-rupturing thrust earthquakes. Additionally, we demonstrate non-planar
rupture effects, by modifying the test geometry to include, respectively, cylindrical curvature
and sharp kinks.

Key words: Numerical solutions; Earthquake dynamics; Computational seismology; Wave
propagation.

1 I N T RO D U C T I O N

The simulation of earthquake rupture dynamics on non-planar faults
embedded in a 3-D, heterogeneous medium has been addressed
by a number of methods. Harris & Day (1999), Magistrale &
Day (1999) and Harris et al. (2002) used finite-difference meth-
ods; Aagaard (1999), Oglesby et al. (2000) and Oglesby (2005)
used finite-element methods; Festa (2004) used spectral-element
methods; Zhang et al. (2006), Kase & Day (2006) and Cruz-
Atienza et al. (2007) used modified finite-difference schemes and
Benjemaa et al. (2009) used a finite-volume technique. The high
spatial sampling necessary to adequately resolve the rupture process
presents a substantial computational challenge to most methods.
Unstructured meshes with adaptive local refinement is a strategy
employed by some. The limitations of adaptive meshing are that
grid generation is more cumbersome, and algorithms may be less
efficient and more difficult to adapt for parallel computation. A more

‘brute force’ approach is to densely sample the model everywhere
with a mesh of regular structure and to exploit that structure to cre-
ate highly efficient and parallelizable algorithms. We have adopted
the latter approach, using the method of support operators (SOM),
a generalized finite-difference method introduced by Samarskii
et al. (1981, 1982) and Shashkov (1996). The SOM was applied
to 3-D elastic wave propagation by Ely et al. (2008), and we ex-
tend that application here to including modelling of spontaneous
rupture.

This paper begins by first reviewing the formulation for the wave
propagation equations and the spontaneous rupture boundary con-
dition. We then lay out the discretization scheme and algorithm
for computing numerical solutions. Next, we verify the method
against semi-analytical solutions computed with the boundary inte-
gral method. We then quantify errors induced due to deformation of
the mesh by simple shearing. Finally, we study the effects of curved
and kinked fault geometry on spontaneous rupture.
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2 T H E O R E T I C A L F O R M U L AT I O N

The faulting model is embedded within a 3-D, heterogeneous, vis-
coelastic solid. The linearized equations of motion for the medium
are

g = ∇(u + γ v), (1)

σ = λ trace(g)I + μ(g + gT), (2)

a = 1

ρ
∇ · σ , (3)

v̇ = a, (4)

u̇ = v, (5)

where σ is the stress tensor, u and v are displacement and velocity
vectors, ρ is density, λ and μ are elastic moduli and γ is viscosity.
All variables are functions of position x, whereas σ , u, and v are
time-dependent as well.

Two types of boundary conditions are employed over the external
surface of the model: a traction-free surface condition (σ · n̂ =
0) and a non-reflective absorbing boundary layer. The absorbing
layer condition is an adaption of the perfectly matched layer (PML)
method, introduced by Berenger (1994, 1996), and used for dynamic
rupture simulation by Ma & Liu (2006). The free surface and PML
implementations are detailed by Ely et al. (2008).

Following Day et al. (2005), faulting is modelled as an internal
surface �, across which discontinuity of displacement may occur.
The unit normal n̂(x) points from the �− side to the �+ side of the
surface �. The limiting values of displacement u− and u+, at the
surface � are

u±(x, t) = lim
ε→0

u(x ± εn̂(x), t). (6)

The two sides are permitted to separate but not to interpenetrate;
so, the relative normal displacement must be positive,

n̂ · (u+ − u−) ≥ 0. (7)

The tangential discontinuity of displacement is denoted ‘slip’ and
given by

s = (I − n̂n̂) · (u+ − u−), (8)

where I is the identity tensor and n̂n̂ is the outer product of the unit
normal with itself. Stress is continuous across � and, when dotted
with the unit normal, is resolved onto � to give traction

τ = σ · n̂. (9)

Traction is the surface density of force acting on −� due to +�.
The shear component of traction is

τ s = (I − n̂n̂) · τ . (10)

The rupture boundary condition is formulated by specifying a
frictional strength τc that is a bound on the magnitude of shear
traction

|τ s| ≤ τc. (11)

When shear traction is less than the frictional strength, slip does
not occur, and � is invisible to elastic waves. Slip only occurs
when shear traction reaches the level of the frictional strength. Slip
velocity opposes the direction of the shear traction according to the
relation

τcṡ = |ṡ|τ s. (12)

This specifies that direction of slip velocity is antiparallel to traction,
since the relative slip velocity of −� has the opposite sign of ṡ.

For the friction law, we use the slip-weakening model (Andrews
1976) that evolves as a function of the slip path length. The path
length is found by the integral

� =
∫ t

0
|ṡ| dt. (13)

The frictional strength is equal to the product of the normal traction
and a coefficient of friction,

τc = −τnμf (�). (14)

τn = n̂ · σ · n̂, (15)

and the coefficient of friction is a function of the slip path length,

μf (�) =
{

μs − (μs − μd)�/d0 � ≤ d0

μd � > d0,
(16)

where μs and μd are coefficients of static and dynamic friction, re-
spectively, and d0 is the critical slip-weakening distance. Generally,
the fault is under compression, though dynamic tensional forces
may develop under certain conditions. It is assumed that the fault
has zero tensional strength and will open in such a case and be-
have as a free surface. Therefore, the normal stress must always be
less than or equal to zero at the fault surface, and the sign of τc in
(14) must always be positive. This model accounts for potentially
repeated episodes of rupture initiation and subsequent arrest of slid-
ing, as well as repeated episodes of fault opening, and subsequent
fault closing. The methodology can also accommodate more com-
plex friction laws (such as those based on rate- and state-dependent
formulations), where there is stationary contact only at zero shear
traction, in which case inequality (11) becomes an equality and the
distinction between τ and τc disappears.

Traction is referenced to an initial state τ 0. This can either be
resolved from an initial stress field σ 0, or specified directly in terms
of a local coordinate system on the fault, such as the strike and
dip coordinate system traditionally used for earthquake problems
(Fig. 1). The former is useful for specifying tractions that result, for
example, from a regional tectonic load. The latter is most natural
when initial traction is determined by local frictional conditions on
the fault. In general, they can be combined as

τ 0 = σ 0 · n̂ + τ 0
n n̂ + τ 0

s1
ŝ1 + τ 0

s2
ŝ2, (17)

where ŝ1 is the strike unit normal and ŝ2 is the dip unit normal.
The strike and dip normals can be defined in terms of a downward
pointing unit normal d̂ (Fig. 1),

ŝ1 = n̂ × d̂, (18)

ŝ2 = ŝ1 × n̂. (19)

3 N U M E R I C A L M E T H O D

Aside from a narrow selection of problems for which analytical
solutions have been found, numerical approximations are needed
to solve the equations of motion and fault boundary conditions
outlined above. Our numerical algorithm discretizes the wave prop-
agation problem using the SOM developed by Ely et al. (2008). The
scheme is explicit in time and uses a hexahedral structured mesh
with rectangular topology. On the mesh we define the space of nodal
functions H N consisting of the hexahedra vertices and the space of
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1142 G. P. Ely, S. M. Day and J.-B. Minster

Figure 1. Non-planar fault with surface unit normals. Surface unit normal
n̂ and downward unit vector d̂ define the local strike and dip coordinate
system (ŝ1, ŝ2, n̂).

cell functions H C consisting of the hexahedra volumes. Discrete
variables are defined on the mesh with the same names as their
corresponding continuous variables. On the nodes, we have (ρ, γ ,
β, x, u, v, a, g) ∈ H N , and on the cells, we have (λ, μ,Y, σ ) ∈ H C .
The additional variables, hourglass viscosity β and hourglass stiff-
ness Y , are used for numerical stabilization. Such a discretiza-
tion gives a partially staggered spatial stencil within the hexahedral
mesh, separating the kinematic variables u, v and a from the stress
tensor σ .

Spatial derivatives are approximated with the discrete vector dif-
ference operators D and D (analogous to the ∇ operator of contin-
uous space), which act over the function spaces as follows:

D : H N → H C and D : H C → H N . (20)

With second-order accurate D and D operators, non-uniform stress
modes may give rise to numerical instabilities. For hexahedra, there
are four non-uniform modes per component of motion, and they are
corrected for by four-vector hourglass operators

Q : H N → H C and Q : H C → H N . (21)

Time is discretized with constant spacing 
t , and time derivatives
are approximated with second-order centred differences. The equa-
tions of motion (1)–(5) are discretized with time index indicated by
a superscript (spatial indices omitted for clarity):

gn = D(un + γ vn−1/2), (22)

σ n = � trace(gn)I + M(gn + (gT)n), (23)

an = R D · σ n − Q · Y Q(un + βvn−1/2), (24)

vn+1/2 = vn−1/2 + 
t an, (25)

un+1 = un + 
t vn+1/2. (26)

The elastic state is stored and updated in vn+1/2 and un+1, whereas
gn , σ n and an are held temporarily. The discretization is staggered
in time with velocity vn+1/2 separated from other variables by 
t/2.

The material variables incorporate the hexahedral cell volumes
V C , and the node volumes V N (computed as the mean V C of the
eight cells incorporating each node):

� = λ

V C
, (27)

M = μ

V C
, (28)

R = 1

ρV N
. (29)

Detailed derivations of difference operators, hourglass corrections
and external boundary conditions are provided in Ely et al. (2008).

For the fault boundary condition, we use a double-node technique
described by Andrews (1999) and Day et al. (2005). Here the method
is generalized for non-planar surfaces and incorporates the scheme
of Day et al. to allow for fault opening. The double nodes are
constructed by inserting a layer of zero-thickness cells along the
fault surface, in which all of the cell valued functions (�, M,Y, σ )
are zero. This has the effect of dividing the problem domain into
two uncoupled regions, and for the nodal functions, this condition
places two sets of colocated values at each fault surface point.
Eq. (24) then gives the acceleration for a frictionless free surface
at the double nodes. Coupling of the double nodes takes place by
applying traction to the frictionless acceleration, to find modified
acceleration

ãn
± = an

± ± AR±(τ − τ 0), (30)

where A is the nodal area, the portion of the fault surface area
associated with each node. The nodal area is the magnitude of the
surface area normal vector as detailed in Appendix A. Similarly,
modified velocity is given by

ṽn+1/2
± = vn−1/2

± + 
t ãn
±, (31)

and modified displacement by

ũn+1
± = un

± + 
t ṽn+1/2
± . (32)

Traction is constructed according to the fault boundary condition
eqs (7), (11), (12) and (14). Substituting (31) and (30) into an
equation for zero relative modified velocity

ṽn+1/2
+ − ṽn+1/2

− = 0 (33)

leads to a trial traction that is the value of traction required for zero
relative velocity between the double nodes at time step n + 1/2,

τ̃ = τ 0 + (vn−1/2
+ − vn−1/2

− ) + 
t (an
+ − an

−)


t A(R+ + R−)
. (34)

The trial traction, if applied, would lock the current relative locations
of the nodes. The tangential contribution to the trial traction is

τ̃ s = (I − n̂n̂) · τ̃ . (35)

We also calculate a trial value of normal traction required for zero
relative normal displacement,

τ̃n = n̂ ·
[
τ̃ + un

+ − un
−


t2 A(R+ + R−)

]
. (36)
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Table 1. TPV3 model parameters.

Material parameters

ρ Density 2670 kg m−3

VP P-wave speed 6000 m s−1

VS S-wave speed 3464 m s−1

γ Viscosity 0.02
Y Hourglass stiffness 1.0
β Hourglass viscosity 2.0

Fault parameters Nucleation Elsewhere

τn Initial normal traction (MPa) −120 −120
τs1 Initial shear traction (MPa) 81.6 70.0
μs Coefficient of static friction 0.677 0.677
μd Coefficient of dynamic friction 0.525 0.525
d0 Slip-weakening distance (m) 0.4 0.4

This traction, if applied, would ensure zero separation of the double
nodes, in the fault normal direction. We then apply the condition
that normal traction cannot be tensional,

τn =
{

0, τ̃n ≥ 0

τ̃n, τ̃n < 0,
(37)

and the condition that shear traction is bound by the frictional
strength

τs =
{

τc, |τ̃ s | ≥ τc

|τ̃ s |, |τ̃ s | < τc.
(38)

Finally, the total traction on the fault can be assembled,

τ = τn n̂ + τs
τ̃ s

|τ̃ s | , (39)

and then the modified nodal accelerations (30) are used to update
the nodal velocities by eq. (25).

4 N U M E R I C A L T E S T S

To verify the numerical accuracy of our method, we use one of a
series of test problems developed for the dynamic earthquake rup-
ture code validation exercise organized by the Southern California

Figure 2. Schematic diagram of the model configuration for sheared mesh S23. The near-fault block (a mirror image of the far block) is removed to allow
viewing of the fault surface. Fault surface elements lying within the 30 × 15 km slipping portion of the fault are shaded grey. Elements in the 3 × 3 km
nucleation patch are shaded dark grey. Slip is right-lateral, with mode II rupture along the x axis and mode III rupture along the y axis. Observation points are
located at P1 and P2.

Earthquake Center (SCEC) and the U.S. Geological Survey (USGS)
(Harris & Archuleta 2004; Harris et al. 2009). For test problem num-
ber 3 (TPV3), Day et al. (2005) computed both boundary-integral
(BI) and finite-difference (FD) solutions to help establish mutual
verification of the two methods. We preform a similar analysis here
and use the BI solutions from Day et al. as a basis to compare TPV3
solutions computed with our SOM method.

TPV3 consists of a finite planar fault within an infinite elastic
isotropic medium. The material and fault parameters for TPV3 are
given in Table 1. Rupture occurs on a 30 × 15 km fault (diagrammed
in Fig. 2) that is stressed parallel to the x axis. Rupture is nucleated
by a 3 × 3 km patch in which shear traction is higher than the initial
static frictional strength τ c(� = 0). Rupture spreads spontaneously
out from the nucleation patch, producing a mixed-mode rupture that
reduces to pure mode II along the x axis and pure mode III along
the y axis.

Accurate numerical solutions for rupture dynamics problems re-
quire sufficient resolution of the cohesive zone. For slip-weakening
friction, the cohesive zone is the portion of the fault that has begun
slipping but not yet reached its dynamic friction level. Day et al.
(2005) found that with a mesh resolution of 50 m (which we use
for the SOM models), the cohesive zone is sampled with a least
6.5 nodes for TPV3, and that this is sufficient for accurate solutions
(e.g. less than 1 per cent error in rupture time) for their method.
Their method is equivalent to SOM in the rectangular case; so,
those results are informative for SOM as well. The resolution re-
quirement for BI is lower; so, we are able to use the coarser 100 m
grid BI solution from Day et al.

We preform three SOM calculations, one with a rectangular mesh
of node spacing 
x = 50 m and two more with meshes distorted
by simple shearing. The first sheared mesh, pictured in Fig. 2, is
constructed from the rectangular mesh by applying the coordinate
mapping⎡
⎢⎣

X ′
jkl

Y ′
jkl

Z ′
jkl

⎤
⎥⎦ =

⎡
⎢⎣

X jkl

Y jkl

Z jkl

⎤
⎥⎦ +

⎡
⎢⎣

0 1 1

0 0 0

0 0 0

⎤
⎥⎦

⎡
⎢⎣

X jkl

Y jkl

−|Z jkl |

⎤
⎥⎦ , (40)

where (X , Y , Z ) are coordinates of the rectangular mesh and (X ′, Y ′,
Z ′) are coordinates of the sheared mesh. We call this mesh ‘S23’.
The name is derived from positions of the non-zero coefficient in the
transformation matrix (second and third positions, where elements
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are ordered with column index most rapidly varying). The second
sheared mesh, named ‘S26’, is constructed from the mapping⎡
⎢⎣

X ′
jkl

Y ′
jkl

Z ′
jkl

⎤
⎥⎦ =

⎡
⎢⎣

X jkl

Y jkl

Z jkl

⎤
⎥⎦ +

⎡
⎢⎣

0 1 0

0 0 1

0 0 0

⎤
⎥⎦

⎡
⎢⎣

X jkl

Y jkl

−|Z jkl |

⎤
⎥⎦ . (41)

Both mappings produce mirror symmetry across the fault plane, 45◦

shearing of the fault surface and a maximum of 54.7◦ of shearing in
the volume. However, the shapes of the elements are quite different
between the two meshes.

To assess the level of agreement between BI and SOM solu-
tions, we first compare the rupture arrival time (defined as the time
when slip velocity surpasses 1 mm s−1) over the fault plane. During
the early stages of rupture, the rupture arrival times agree closely
among BI and SOM solutions (Fig. 3). At later times, the rectangu-
lar SOM solution falls behind BI by as much as 0.022 s. The rms
difference (averaged over the fault plane) is 0.009 s or about 0.24
per cent of the average rupture time of 3.56 s. Rupture velocities
on the sheared meshes are faster in the direction corresponding to

Figure 3. Rupture arrival time contours (s) comparing boundary integral
solutions (BI) to SOM solutions for a rectangular mesh and for sheared
meshes S23 and S26.

the long axis of the sheared elements, matching BI for S26 and
slightly exceeding BI for mesh S23. In the direction of the short
axis of the elements, rupture velocities are similar to the rectangu-
lar case—slightly slower than BI. The maximum and rms difference
are 0.034 s and 0.010 s for mesh S23, and 0.021 s and 0.006 s for
mesh S26.

Fig. 4 compares unfiltered times histories of shear traction, slip
rate and slip at a point P1, 7.5 km from the origin in the mode
II direction. All important features are closely matched, including:
waveform shape and amplitude; time of initial rupture at 2.95 s;
time of reflected arrival at 6.2 s; time of rupture arrest at 7 s and
the time of short rupture reactivation at 8 s. The largest misfit is
due to small oscillations in the slip rate. At frequencies lower than
the oscillations, the fit is nearly perfect. Fig. 5 shows a similar
comparison for point P2, 6 km from the origin in the mode III
direction.

Perhaps the most useful mesh deformation for earthquake rup-
ture simulations is shearing in the plane defined by the fault surface
normal and the slip vector. Shearing of this orientation does not
effect the fault surface elements, and they remain rectangular. Vol-
ume element are defected towards or away from the slip vector. This
geometry accommodates the case of dip–slip rupture on a dipping
fault intersecting the free surface, as well as the case of a vertical
strike-slip fault with variable strike. Low-angle thrust faults, in par-
ticular, may require drastic element deformations of this type; so, it
is important to understand the numerical affects of such deforma-
tions. To that end, we ran a series of tests with the mapping⎡
⎢⎣

X ′
jkl

Y ′
jkl

Z ′
jkl

⎤
⎥⎦ =

⎡
⎢⎣

X jkl

Y jkl

Z jkl

⎤
⎥⎦ +

⎡
⎢⎣

0 0 exz

0 0 0

0 0 0

⎤
⎥⎦

⎡
⎢⎣

X jkl

Y jkl

−|Z jkl |

⎤
⎥⎦ , (42)

where exz is a variable amount of mesh strain. In our naming scheme,
this mesh is called ‘S3’. Mesh strain was increased to a maximum
of 3, in increments of 0.5, resulting in a maximum shear angle of
72.6◦.

Numerical errors are assessed by comparing each sheared mesh
model to the reference rectangular mesh model. The rms differences
in rupture arrival time, slip and peak slip rate are computed for the
entire 30 × 15 km slipping portion of the fault. The rms differences
increase logarithmically by roughly an order of magnitude over
the 26.6◦–72.6◦ range of shearing (Fig. 6). At maximum shear, the
difference is 0.5 per cent for rupture time, 0.6 per cent for slip and
10.3 per cent for peak slip rate. These results indicate the method
remains highly accurate for applications with modest shearing such
as 60◦ dipping normal faults (30◦ shear) or vertical strike-slip faults
with small changes in strike. Even for low-angle trust faults, with
high amounts mesh shear, accuracy is likely acceptable for many
applications.

For completeness, we verify convergence of the numerical
method with decreasing spatial step size 
x for the rectangular
mesh case. As the rectangular case is equivalent to the finite-
difference method of Day et al. (2005), their analysis directly applies
here. We have extended the range of mesh resolutions, reaching

x = 10 m at the finest. Fig. 7 illustrates power-law convergence
of rms errors in rupture arrival time, slip and peak slip rate. It
should noted that convergence of the algorithm with deceasing step
size is not proof of correctness, and it is for that reason that the
previous comparisons with BI are an essential component of the
verification.

The 10 m case consisted of one billion mesh nodes (reduced
eight-fold through symmetry in TPV3) computed for 15 000 time
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Figure 4. Time histories of shear stress, slip and slip rate for the mode II, in-plane point P1. The right-hand panels are magnified in time to show detail of the
rupture arrival.

steps. The simulation required 4 hr to complete using 1024 CPU
cores and 250 GB of memory on the Ranger Linux cluster at the
Texas Advanced Computing Center. The 50 m case (10 million mesh
nodes) can be computed on a modern laptop in about 8 hr.

5 N O N - P L A NA R FAU LT S

Changes in fault direction can play an important role in the nucle-
ation, termination and radiated energy of earthquakes. Non-planar
geometry provides a mechanism by which dynamic changes in
normal stress (and therefore friction) can occur. Detailed study
of non-planar rupture, using a variety of analysis and numerical

methods, include work by Andrews (1989), Tada & Yamashita
(1996), Bouchon & Streiff (1997), Aochi et al. (2000), Poliakov
et al. (2002), Duan & Oglesby (2005), Kase & Day (2006), Cruz-
Atienza et al. (2007), Benjemaa et al. (2007) and Adda-Bedia &
Madariaga (2008). Laboratory scale model experiments have also
been performed by Rousseau & Rosakis (2003). Here we make
simple modifications to TPV3 to demonstrate the effects of fault
curvature and sharp fault kinks.

Our test problems modify TPV3 by varying the strike direction,
keeping the fault vertical, and keeping the total fault length the
same at 30 km (Fig. 8). The first test problem has cylindrical fault
geometry of radius 90/π km, with the ends of the fault rotated
30◦ relative the nucleation point. The second test problem has a
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Figure 5. Time histories of shear stress, slip and slip rate for the mode III, anti-plane point P2. The right-hand panels are magnified in time to show detail of
the rupture arrival.

kinked geometry consisting of three planar segments with a 30◦

change in strike 7.5 km from the nucleation point, on either side. The
problems are otherwise identical to TPV3. The grids are constructed
so that the fault is discretized with square elements having the same
50 m resolution as the rectangular planar model. No elements are
sheared more than 30◦; so, gauging from the sheared mesh tests, we
can expect that rms errors due to mesh shearing will be less than
0.2 per cent for slip, less than 2 per cent for slip rate and less than
0.05 per cent for rupture time.

Typically, non-planar fault studies have set up a uniform external
stress field that is resolved onto the fault, resulting in variable trac-
tion conditions depending on the fault’s local orientation. Here, we

instead rotate the local initial stress field, so that the resolved trac-
tion on the fault remains in a fixed orientation relative to the local
fault orientation. The magnitudes of initial normal and shear trac-
tion are assigned uniform values over the fault surface, regardless
of local orientation. The goal is to isolate the effects of non-planar
geometry, without introducing heterogeneity in the initial resolved
tractions on the fault. This scheme presents a problem for the case
of a sharp kink, as it requires a discontinuity of stress at the kink.
However, a perfectly sharp discontinuity cannot be represented by
discrete equations; so, the sharp kink effectively becomes a curve
of radius comparable to the discretization length in the numerical
solution.
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Figure 6. Difference in rupture time, slip and peak slip rate as a function
of shear strain applied to the mesh. Values are rms averages over the fault
plane, referenced to the rectangular case. The deformed element shapes are
depicted along the lower axis.

Figure 7. Difference in rupture time, slip and peak slip rate as a function
of discretization size 
x . Values are rms averages over the fault plane,
referenced to a 
x = 10 m case.

Symmetry in the planar TVP3 model ensures that normal traction
of the fault remains constant at all times. A fundamental difference
of the non-planar models is that fault slip induces dynamic changes
in normal traction (and frictional strength) at other locations on the
fault. In the cylindrical and kinked geometries, right-lateral slip re-
sults in decompression (lower strength) in the negative x direction
and compression (higher strength) in the positive x direction relative
to the axis of the curve or kink. For the cylindrical model, the nor-
mal traction change is a gradual, nearly linear function of distance
along the fault (Fig. 9). The kinked model develops large stress con-

Figure 8. TPV3 modified for cylindrical fault geometry (top panel) and for
kinked fault geometry (bottom panel).

centrations at the kinks that rapidly decay with distance from the
kink. The stress concentrations have a sign change at the axis of the
kink that divides the decompressed side from the compressed side.
In both models, the decompressed side has higher rupture velocity
(Fig. 10) and higher total slip (Fig. 11).

The total moment release for the cylindrical model (34.0 ×
1018 N m) is greater than the planar model (33.2 × 1018 N m),
and the moment release for the kinked model (27.9 × 1018 N m)
is lower than the planar model. The lower moment for the kinked
model is due to the partial barriers to slip formed by the kinks,
as seen in slip profiles along the in-plane axis (Fig. 12). The kink
barrier in the positive x side causes rupture to pause for about 2 s
before continuing to the next fault segment. The 2 s pause is clearly
visible in a space-times plot of slip acceleration (Fig. 13).

Another effect seen in the space-time plot is the radiation of P
and S waves from the fault kicks at the time of their initial rupture.
The kinked model in general has a more complicated rupture history
compared with the planar and cylindrical models. For the cylindrical
model, the space–time plot shows that rupture along the in-plane
axis is primarily halted by the P wave reflected from the lateral
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at the kinks.
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Figure 10. Rupture arrival time (s) for planar, cylindrical and kinked fault
models.

fault boundaries (marked Pi). Toward the edges, rupture is briefly
reactivated by laterally reflected S waves (Si) or vertically reflected
S waves (Sa). By contrast, much of the kinked model rupture is
halted by the Sa wave. Rupture is reactivated on most of the central
segment after rupture begins on the compressed segment following
the 2 s pause. This second rupture stage is halted by a Pi wave and
in some places briefly reactivated by an Si wave.
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6 C O N C LU S I O N

We have extended the support-operator numerical scheme for 3-D
viscoelastic wave propagation, previously developed by Ely et al.
(2008), to model non-planar spontaneous rupture. We implement a
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Figure 13. Space–time plots of slip acceleration magnitude along the in-
plane (horizontal) axis. R indicates initial rupture. Pi and Si indicate horizon-
tally travelling P and S waves, reflected by kinks and lateral fault boundaries.
Sa indicates vertically travelling S waves reflected by the top and bottom
fault boundaries.

slip-weakening friction model, and the method is readily adaptable
to other types of friction laws. The method is verified against a
boundary integral solution for planar rupture problems, using both
rectangular meshes and meshes distorted by shearing. The accuracy
of the sheared mesh tests indicates that the method is also suitable
for modelling low-angle surface rupturing thrust faults. Non-planar
rupture effects were demonstrated using a cylindrical fault geome-
try as well as a planar segmented, or kinked, geometry. The kinked
geometry introduces significant rupture complexity relative to pla-
nar and cylindrical cases, with the kinks acting as partial barriers to
slip that lead to high stress concentrations.
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A P P E N D I X : C A L C U L AT I O N
O F S U R FA C E N O R M A L S
A N D N O DA L A R E A S

Surface normals and nodal areas are needed for the fault boundary
calculations. On a hexahedral mesh, they may be found as follows.
Quadratic interpolation of 3 × 3 stencil of boundary surface nodes
with coordinates X jk is given by

x(ξ ) =
2∑

j,k=0

N jk(ξ )X jk, (A1)

where the shape functions Njkl(ξ ) are formed from Lagrange inter-
polation polynomials

N jk(ξ ) = �2
j (ξ )�2

k(η). (A2)

The Lagrange polynomials of degree 2 are

�2
j (ξ ) =

2∏
i = 0
i 	= j

ξ − �i

� j − �i
. (A3)

The interpolation maps continuous Cartesian coordinates x to logi-
cal coordinates ξ and discrete nodal coordinates Xjk to logical nodal
coordinates �jk . Surface area vectors are given by the Jacobian of
the coordinate mapping:

dS = ∂x

∂ξ
× ∂x

∂η
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A4)

The magnitude of the Jacobian J = |dS| gives the area associated
with each mesh node, and the surface unit normal is n̂ = dS/J. Eval-
uating (A4) at the central node �11 gives the following expressions
for the components of d S (�11):

dSx
11 = 1

12

[
Y21(Z12 − Z10 + Z22 − Z20)

+ Y12(Z01 − Z21 + Z02 − Z22)

+ Y01(Z10 − Z12 + Z00 − Z02)

+ Y10(Z21 − Z01 + Z20 − Z00)

+ Y22(Z12 − Z21)

+ Y00(Z10 − Z01)

+ Y02(Z01 − Z12)

+ Y20(Z21 − Z10)
]
, (A5)

dSy
11 = 1

12

[
Z21(X12 − X10 + X22 − X20)

+ Z12(X01 − X21 + X02 − X22)

+ Z01(X10 − X12 + X00 − X02)

+ Z10(X21 − X01 + X20 − X00)

+ Z22(X12 − X21)

+ Z00(X10 − X01)

+ Z02(X01 − X12)

+ Z20(X21 − X10)
]
, (A6)

dSz
11 = 1

12

[
X21(Y12 − Y10 + Y22 − Y20)

+ X12(Y01 − Y21 + Y02 − Y22)

+ X01(Y10 − Y12 + Y00 − Y02)

+ X10(Y21 − Y01 + Y20 − Y00)

+ X22(Y12 − Y21)

+ X00(Y10 − Y01)

+ X02(Y01 − Y12)

+ X20(Y21 − Y10)
]
. (A7)

Quadratic interpolation cannot be used at the edge and corners
nodes of the surface, where the 3 × 3 stencil would otherwise
extend outside of the mesh. In this case, we may instead use linear
interpolation in the direction normal to the edge. Fortunately, this
does not require constructing separate operators for each special
case. It is handled more simply by extending the mesh with ghost
nodes, and duplicating the edge node coordinates into the ghost
nodes. It can be shown that when the interior operators (A5)–(A7)
are applied at edges with such ghost nodes, the equations naturally
reduce to the proper linear interpolation equations.
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