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SUMMARY 

We present a split-node finite difference (FD) method for modeling shear ruptures that is 

consistently fourth-order accurate in its spatial discretization, both in the interior of the model 

and at the fault. The method, called Mimetic Operator Split Node (MOSN), uses a staggered 

grid, and the fault plane is discretized using split nodes for both discontinuous displacement and 

discontinuous stress components. The method differs in several ways from previous FD methods 

for rupture modeling. (1) It uses one-sided differentiation (in the fault-normal direction) to retain 

high-order accuracy at the discontinuity. (2) The one-sided differentiation is implemented with 

mimetic FD operators that conserve the integration-by-parts formula (including boundary terms) 

in discrete form. (3) The mimetic operators lead naturally to the evaluation of conjugate tractions 

at the split-node displacement sites, as required to apply the frictional-sliding boundary 

conditions.  In the interior of the grid, the mimetic operators reduce to the conventional fourth-

order staggered-grid FD operators. We verify the accuracy of the MOSN method using two test 

problems: a fixed-speed rupture case (Kostrov’s problem), and the case of a spontaneous rupture 

with slip-dependent friction. In the former test, comparisons of slip and shear stress waveforms 

confirm the convergence of numerical results to the analytical solution as the grid is refined. In 

the latter test, assessment is based on both qualitative waveform characteristics and a quantitative 

convergence analysis that uses error metrics in rupture time, final slip, and peak slip rate. 

Compared with a previously verified second-order scheme, the MOSN method shows significant 

reduction in artifacts attributable to numerical dispersion and also yields a considerable 

improvement in rupture arrival times. While from a practical standpoint the performance gains of 

MOSN over the second-order scheme are considerable, MOSN has comparatively poorer 

convergence rates, and loses its advantage in accuracy in the limit of very small spatial steps. We 

attribute the relatively low convergence rates to our use of a friction law that induces gradient 
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discontinuities in the fault traction, violating the smoothness assumptions underlying the 

accuracy estimates, a limitation which may not apply to more complex, experimentally-derived 

friction laws with smooth dependence on slip-rate and state variables. Our current 

implementation is two dimensional and assumes a straight fault, but the method is extensible to 

more general 3D geometries. 

INTRODUCTION 

The dynamics of a shear crack confined in a linearly elastic continuum has been actively 

researched because of its potential contributions to understanding earthquake physics and ground 

motion excitation. Solutions are typically given in terms of the slip between the walls of the fault 

and evolving stress fields as the rupture progresses. Analytical results are available for a few 

geometrically simple cases with prescribed rupture velocity (e.g., Kostrov, 1964; Burridge & 

Willis, 1969; Richards, 1973; Richards, 1976). More realistic models allow spontaneous rupture 

propagation over a fault surface where frictional sliding is controlled by a constitutive law. 

Given the initial stress distribution, elastic properties of the continuum, and geometry of the 

fault, the friction law governs the evolution and arrest of a spontaneous rupture. This friction law 

may depend on slip, slip rate, effective normal traction, and various state variables (Dieterich, 

1979; Ruina, 1983). Some friction laws admit stationary contact, in which case the shear traction 

is bounded by the maximum frictional strength of the fault given by the constitutive relation, and 

no slip is permitted where shear traction is less than the frictional strength. In that case, 

spontaneous rupture represents a non-linear and mixed boundary problem, where respective 

domains of dynamic and kinematic boundary conditions are time dependent and not known a 

priori. In general, analytical solutions are not available, and we depend upon numerical solvers 

that model the elastic motion in the interior coupled to frictional sliding along the fault plane. 
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The problem is computationally intensive, and precise and flexible numerical techniques are still 

a subject of research. 

Accuracy of numerical modeling of rupture dynamics is highly dependent on the 

implementation of the faulting boundary conditions. The traction-at-split-node (TSN) method 

was developed by Andrews (1973, 1976a, 1976b), and extended to 3D by Day (1977, 1982). It 

has proven to be a precise and efficient implementation of these conditions in the framework of 

finite-differences (FD) (e.g., Andrews, 1999; Dalguer & Day, 2006) and finite-elements (e.g., 

Oglesby et al., 1998; Aagaard et al., 2001). Our development here parallels that of Day et al. 

(2005) (hereafter D05) and Dalguer & Day (2007) (hereafter DD07).  

The TSN method represents a fault as a surface discretized by a set of double nodes 

called split nodes. Each half of a split node belongs to only one side of the fault, and it may 

experience motion relative to its counterpart. Thus, velocity and displacement discontinuities 

(slip and slip rate) across the fault are allowed. Elastic deformations at each side of the fault are 

accounted by a separate application of equations of motion at each half of the split node, and the 

continuity in surface traction (frictional resistance and normal traction) controls the interaction 

between the two halves of the split node (Andrews, 1999; D05; Moczo, et al., 2006). FD 

implementations of the TSN technique have used two types of grids, the partially staggered grid 

(PSG), and the standard staggered grid (SSG). A recent review of these grids was done by 

Moczo et al. (2006) (where a SSG is just referred to as a staggered grid). In a PSG, all 

components of particle velocity are defined at the same grid point, while the whole stress tensor 

is placed in the cell centers. In this case, the fault coincides with a plane of split velocity nodes, 

e.g., the DFM algorithm of Day (1982). On the other hand, the SSG defines different grid points 

to accommodate each particle velocity component (with corresponding displacement), and the 
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shear stress components are also distributed around the unit cell. This grid has been widely used 

in 2D and 3D seismic wave propagation (Madariaga, 1976; Virieux, 1986; Levander, 1988; 

Graves, 1996; Pitarka, 1999; Kristek, et al., 2002; Olsen, et al., 2006). Recently, DD07 

introduced an implementation of the TSN method on a velocity-stress SSG, where split nodes are 

used to represent both the velocity and stress components that are discontinuous across the fault. 

They compared this method, referred as SGSN (Staggered Grid Split Node), with DFM by 

solving a benchmark problem due to Harris et al. (2004), measuring accuracy in terms of three 

error metrics: rupture arrival times, final slip, and slip rate. This study revealed similar order of 

convergence of these two algorithms as the grid interval decreases. In consequence, DD07 

concluded that the grid geometry (i.e., PSG versus SSG) has minimal influence on the accuracy 

of the TSN implementation, compared with the large influence of different fault-boundary 

formulations found by Dalguer & Day (2006).  

A common aspect of the SGSN and DFM algorithms is that both use second-order spatial 

discretization of the boundary conditions at the split nodes. DFM is second-order everywhere, 

while in the case of SGSN, fourth-order spatial differencing is used in most of the continuum, 

but reduced to second order at points near the fault. Other FD versions of the TSN technique are 

also limited to second order accuracy, e.g., the original scheme introduced by Andrews (1973; 

1999).  

In this work, we develop a split-node FD method for modeling shear ruptures that is 

consistently fourth-order accurate in its spatial discretization. That is, it maintains fourth-order 

accuracy both in the interior of the model and at the fault. This consistency in order of accuracy 

at boundaries is achieved very naturally in higher-order variational methods such as the Spectral 

Element Method (e.g., Ampuero, 2002; Madariaga et al, 2006; Festa and Villote, 2006), but 
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requires special boundary treatment in FD. Specifically, the use of one-sided stencils at split 

nodes allows a fourth-order accurate discretization of the jump conditions without requiring the 

differencing stencil to cross physical discontinuities at the fault. The same order of accuracy is 

maintained in the interior discretization of the elastodynamic wave equations (which are written 

in a displacement-stress form). We focus here on comparing the accuracy of the second- and 

fourth-order schemes, and therefore limit the implementation to 2D, in-plane motion.  

 The method presented here for spontaneous rupture problems, based on one-sided, 

fourth-order stencils, was first introduced in Rojas et al. (2006) and further described in Rojas et 

al. (2007). Prior to this, Kristek et al. (2002) introduced a fully fourth-order method for seismic 

wave propagation problems based on one-sided stencils for the free-surface boundary of the 

halfspace, and that approach was subsequently extended to the spontaneous rupture problem by 

Kristek et al. (2006), and Moczo et al. (2007). The main difference between our method and that 

of the latter authors is in the method of construction of the one-sided operators. In the current 

work, with an eye toward future developments, we use the mimetic operators introduced by 

Castillo et al. (2001) and Castillo & Grone (2003). Mimetic operators are so called because, by 

construction, they mimic certain integral identities obeyed by their continuous counterparts. In 

this case, the operators obey a summation-by-parts formula that is the discrete analogue of the 

Green-Stokes theorem. We will call this family of differentiators Castillo-Grone operators, and 

we call the resulting rupture simulation method MOSN (Mimetic Operators and Split Nodes).  

 While MOSN only uses mimetic operators in a 1D sense, i.e., to handle differentiation in 

the fault-normal direction, the approach can be extended to yield fully mimetic solutions to 

rupture problems in 2D and 3D (Ely et al., 2006), which in turn translates into important 

properties of those solutions, including reciprocity and energy conservation. The formulation in 

terms of these operators also has at least two further advantages: (i) the coincident location of 
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traction components at split displacement (and velocity) nodes (and conversely, of 

displacement/velocity components at split stress nodes in the method of DD07), which is a 

requirement of the TSN method, is already inherent in the theory of the mimetic discretization of 

the fault-normal derivatives, and does not require an auxiliary construction for its 

implementation; and (ii) the methodology of Castillo et all. (2001) already provides sixth-order 

accurate counterparts for the fourth-order operators used here. Mimetic discretization has been 

successfully applied to diffusion problems (Shaskov & Steinberg, 1996; Hyman et al. 1997; 

Hyman et al. 2002), Maxwell equations (Hymann & Shaskov, 1999), and recently in seismic 

wave propagation (Strand, 1999; Ely et al., 2007).  

The assessment of the MOSN method is performed by solving two test cases. First, we 

solve numerically the self-similar propagation of a Mode II shear crack (Kostrov’s problem), for 

which an analytic solution is known. Next, we present results for a spontaneous rupture problem 

that is a 2D (in-plane motion) analog of Version 3 SCEC 3D benchmark problem due to Harris et 

al. (2004). We use the DFM algorithm to generate a reference solution and then study accuracy 

and convergence of MOSN solutions following the methodology used in D05 and DD07. For 

relatively coarse grids, rupture arrival times are better modeled by the MOSN method than by the 

(second-order) DFM algorithm, as are the time histories of shear stress and slip velocity. The 

apparent convergence rate of MOSN is lower than that of DFM, however, and its advantage in 

accuracy disappears for sufficiently small spatial step size. The low apparent convergence rate 

may be a result of discontinuous derivatives in the stress and velocity fields due to lack of 

smoothness of the assumed friction law. Nonetheless, for accuracy levels of practical interest 

(i.e., ~1% in rupture time), the MOSN method produces large gains in computational efficiency, 

and may prove even more advantageous for applications to inherently smooth friction laws such 

as rate- and state-dependent laws (e.g., Dieterich, 1979; Ruina, 1983).  
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Here we present only the implementation for a fault coincident with a Cartesian 

coordinate plane. We also focus specifically on discretization of the fault surface, which we 

therefore embed in an unbounded space. While the presentation here is 2D, the MOSN method 

can be immediately generalized to 3D staggered grids by using the technique of DD07 to align 

the slip and frictional-stress vectors.  

PROBLEM STATEMENT: IN-PLANE SHEAR RUPTURES 

In this section, we present the mathematical formulation of the 2D in-plane rupture 

propagation problems that are the subject of our numerical studies. We consider an infinite, 

isotropic, and linearly elastic volume embedding a planar surface Σ across which there may be a 

time-dependent discontinuity in the displacement. In applications to earthquakes, the surface Σ 

represents a fault, the discontinuity is the fault slip, and the initiation of unstable slip is referred 

to as rupture. We take Σ to be the plane z = 0, and consider a shear rupture in which the 

displacement is independent of the y coordinate and has only x and z components (so slip is in 

the x direction). Elastic disturbances caused by the rupture satisfy the equations of motion,  

, ,x xx x xz z
u! " "= +!!  (1.1)  

, ,z xz x zz z
u! " "= +!!  (1.2) 

and the Hooke’s law, 

( )

( )

( )

, ,

, ,

, ,

2

2

xx x x z z

zz z z x x

xz x z z x

u u

u u

u u

! " µ "

! " µ "

! µ

= + +

= + +

= +

 (2) 

Here, we adopt the notation ( )2 2
/

x x
u u t=! !!! , ux,x =∂(ux)/∂x, τxx,x=∂τxx /∂x, and so on. 

Parameters in this model are the density ρ and Lame constants λ and µ. Dependent variables are 

the components of the displacement vector u = (ux ,uz), and the components of the incremental 
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stress tensor are τxx ,τzz , andτxz, measured with respect to an initial distribution (in static 

equilibrium) given by 0 0
,

xx zz
! ! and 0

xz
! . Additional parameters are the P- and S-wave speeds, 

denoted as α and β, respectively, corresponding to ( )2 /! " µ #= + and /! µ "= . 

Solution of (1.1) and (1.2) requires an appropriate set of initial and boundary conditions. 

Assuming quiescence prior to rupture initiation at t = 0, we have that = =u u 0!  everywhere for t 

≤ 0. Fault boundary conditions at z = 0 only allow in-plane motion, preclude both opening of the 

fault and interpenetration of the fault materials, and require continuity of normal and shear 

traction at the fault. Thus, uz, τzz , and τxz are continuous at z = 0. On the other hand, the 

horizontal particle displacement ux may have a discontinuity across the axis x and this jump is 

called slip s. Let us designate the limiting values for ux at this interface as, 

0
( , 0, ) lim ( , , ) , 0
x x
u x z t u x z t

!

! !
±

"

= = = ± > , 

Where the superscripts  (+) and (-) denote, respectively, the plus-side and minus-side part of the 

fault plane. Thus,
x x

s u u
+ !

= ! . The time derivative of the slip, s! is known as the slip rate or slip 

velocity. In this work, we solve numerically two different in-plane problems which demand 

distinct mathematical statements for their boundary conditions. Particular expressions are given 

below for each case. 

A self-similar case 

In addition to the conditions proposed above, let us assume that the medium is 

homogenous and 0 0
0

xx zz
! != = , while 0

xz
!  is constant. The dynamics of a self-similar crack with a 

bilateral propagation at a constant velocity vR lower than the Rayleigh velocity can be described 

analytically using the solution due to Kostrov (1964). As the rupture evolves, the total shear 
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traction vanishes on the crack surface, while no slip is experienced elsewhere. The solution of 

this problem satisfies the symmetry (or antisymmetry) properties of a mode II crack problem 

with respect to z = 0 (e.g., see Broberg, 1999). Specifically, uz, and τxz are even functions of z, 

while ux, xx
! and 

zz
!  are odd functions. Taking the symmetry into account, we solve (1) and (2) 

in z > 0, with linear, mixed boundary conditions  

0
for 0,

0 for 0, .

0           for 0    

xz xz R

x R

zz

z x v t

u z x v t

z

! !

!

" = # = $%
&

= = >%'

= =

             (3) 

Results from the application of our numerical scheme to this problem are given in a section 

below. Expressions for the analytical solution can be found in the original paper by Kostrov 

(1964) and in later references (e.g., Richards, 1973).  

Spontaneous rupture 

Nonlinearity is introduced in our rupture model by allowing the rupture velocity to be 

implicitly controlled by the frictional behavior relating traction to slip at the fault surface. We 

formulate the jump conditions at z = 0 as in D05, in terms of the total shear traction 0

xz xz
T ! != + , 

in the form 

c
T !"  (4) 

0.
c
s T s! " =! !  (5) 

Equation (4) implies that T is bounded above by the frictional strength of the fault τc. On the 

other hand, equation (5) allows a nonzero velocity discontinuity just when the magnitude of the 

total shear traction reaches τc. In general, τc evolves according to a constitutive law which may 

depend upon the total normal stress, slip, slip velocity and other mechanical, thermal, and state 

variables (e. g., Bizarri et al., 2001). 
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In this work, we adopt the slip-weakening (SW) model introduced by Ida (1972) and 

Palmer and Rice (1973) as the friction law. The frictional strength τc is assumed to be a fraction 

of the total normal stress 0

n zz zz
! " "= +  (taken negative in compression)  

τc = -σn µf (l) .                                                       (6) 

The coefficient of friction µf (l) depends on the slip path length l, defined as
0
( ') '

t

s t dt! ! , through 

the slip-weakening relationship, 

( ) 00

0

( ) s s d
f

d

l dl d
l

l d

µ µ µ
µ

µ

<! " "
= #

$%
                                    (7) 

Parameters µs and µd are the coefficients of static and dynamic friction, respectively, and d0 is 

the critical slip-weakening distance. This SW model ignores the effect of parameters such as slip 

rate, pore fluids, and temperature, among others that are likely to be important in frictional 

sliding under the conditions of natural earthquakes (e.g., Rice, 2006). However, it has been 

widely used in rupture dynamics and earthquake simulation (e.g., Andrews, 1976a; Andrews, 

1976b; Andrews,1999; Madariaga et al., 1998; Harris et al., 2004; D05; Olsen et al., 2006; 

DD07), and the SW model therefore provides a convenient standard for comparison with 

previous numerical solution methods.  

NUMERICAL SCHEME 

The simple planar geometry of the shear crack problems addressed in this work allows 

the implementation of our numerical method on a rectangular SSG. We further restrict the 

development here to 2D, although it generalizes immediately to 3D. Apart from the fault plane, 

this grid is similar to the one originally used by Madariaga (1976) and later by Virieux & 

Madariaga (1982) in the solution of two dimensional crack problems. Numerical differentiation 

with respect to each spatial coordinate is performed by using an appropriate staggered FD stencil 
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along each gridline. For a consistent fourth-order discretization of both elastodynamic equations 

and jump conditions, we require one-sided stencils for differentiation along gridlines orthogonal 

to the fault in a neighborhood of this boundary, while centered stencils can be used elsewhere. 

To facilitate the implementation of the TSN method (detailed below), we follow Dalguer & Day 

(DD07) by (i) introducing split nodes to represent the discontinuities that are present in both 

stress and velocity components located on the fault-plane, and (ii) locating certain stress and 

velocity components together at the split nodes. The Dalguer and Day method differs from 

earlier split node methods in its explicit representation of stress-component discontinuities (in 

addition to the conventional velocity discontinuities), and by its coincident location of fault-

normal velocity at split-stress nodes (complementary to the conventional device of locating fault 

shear stress at split-velocity nodes). This method requires FD formulas capable of differentiating 

both velocity (or displacement) and stress fields throughout the grid, explicitly taking into 

account both the fault plane discontinuities and the coincident location of stress and velocity 

components at the split nodes. We construct such formulas by combining one-sided difference 

operators from the Castillo-Grone family of mimetic operators. Below, we describe this 

construction process, and then we detail the application of the resulting difference operators in 

our TSN implementation. 

Mimetic finite differences 

 We consider two functions f(z) and v(z) on the interval [a,b], 0a b< < , both of which are 

smooth, apart from a possible discontinuity of v at z = 0. We want to construct approximations 

for dv dz  anddf dz , respectively, that (i) are everywhere fourth-order accurate, and (ii) satisfy 

a discrete analog of the integration by parts formulas on each of the two halflines terminating at 

the discontinuity, 
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( )

( )

0 0

0 0

(0 ) (0) ( )

(0 ) (0) ( )

a a

b b

dv df
fdz v f v a f a v dz

dz dz

dv df
fdz v f v b f b v dz

dz dz

! !

+ +

!

+

= ! !

= ! + !

" "

" "

. (8) 

We refer to the second as the conservation criterion (for example, in the case where v is velocity 

and f is stress, it is a statement of discrete energy conservation in 1D). Evaluations of v and f are 

placed on a staggered grid, with equal-sized cells
1

,
j j
z z

+
! "# $ , ,... 2, 1,0,1, 2,...j M N= ! ! ! , 

with jz jh= , a Mh= ! ,b Nh= . Points 
j
z are called nodes, and 

0
z  is a split node. In addition, the 

cell centers are indexed with half-integer indices, ( )1 2 1
2

j j j
z z z

+ +
= + . We define vector v in 

terms of values of v at the nodes (including the split node) and f in terms of values of f at the cell 

centers as well as at the split node, 

!

+

" #
$ %
& '

v
v =

v

, (9) 

where 

( ) ( ) ( )( )

( ) ( ) ( )( )

( )

2 1

1 2

,... , ,

, , ,...,

0

T

M

T

N

v z v z v z v

v v z v z v z

v v

! !

! ! !

+ +

± ±

=

=

=

v

v , (10) 

and 

!

+

" #
= $ %
& '

f
f

f
, (11) 

where 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( )

1 2 3/2 1/2 0

0 1/2 3/2 1 2

0

, ,... , ,

, , ,.... ,

0 0

T

M M

T

N N

f z f z f z f z f

f f z f z f z f z

f f f

!

! ! + ! !

+

!

+ !

=

=

= =

f

f , (12) 
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(thus, v has dimension M+N+2, and f has dimension M+N+4). Fig. 1 shows the staggered 

distribution of the vector components. The approximations to dv dz  and df dz  are, 

respectively, Dv and Gf, where D is an (N+M) x (N+M+2) matrix and G is an (N+M+2) x 

(N+M+4) matrix. As indicated by Fig. 1, the derivative approximation Dv maps v from nodes 

(including the split node) to cell centers, and Gf maps f from cell centers (plus endpoints and 

split node) to nodes (including the split node).  

 We can construct operators D and G by combining two separate one-sided difference 

operators, applied to +
v  and !

v , respectively (and likewise to ±
f ). If we do so using the fourth-

order difference operators developed by Castillo et al. (2001) and Castillo and Grone (2003), the 

resulting D and G will meet our stipulated order-of-accuracy and conservation criteria. Those 

authors describe a three-parameter family of operators that satisfy those criteria when applied to 

smooth functions on a finite interval. We choose their parameters, which they call( ), ,! " # , 

equal to( )0,0, 1 24! , since this choice minimizes the bandwidth of the operators. We designate 

the resulting Castillo-Grone operators, for an interval of length Kh, by ( )
D

K

CG
 (a K by K+1 matrix) 

and ( )G K

CG
 (a K+1 by K+2 matrix), for which the explicit expressions are  

( )

1045 909 201 1165 129 25
0

1142 1298 514 5192 2596 15576

1 27 27 1
0 0 0

24 24 24 24

D ,1 27 27 1
0 0 0

24 24 24 24

1 27 27 1
0 0 0

24 24 24 24

K

CG

! "
# # #$ %
$ %
$ %# #
$ %
$ %

= $ %# #
$ %
$ %

# #$ %
$ %
$ %& '

!

!

!

!

" " " " " " " !

 (13) 
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( )

1775 1790 2107 1496 272 25
0

528 407 1415 2707 2655 9768

16 31 29 3 1
0 0

105 24 24 40 168

G .1 27 27 1
0 0 0

24 24 24 24

1 27 27 1
0 0 0

24 24 24 24

K

CG

! "
# # #$ %
$ %
$ %# #
$ %
$ %

= $ %# #
$ %
$ %

# #$ %
$ %
$ %& '

!

!

!

!

" " " " " " " !

 (14) 

In each case, the lower half, not shown, is determined by a centro-skew-symmetric condition, 

i.e., the components of ijd  and 
ij
g  of ( )

D
K

CG
 and ( )G K

CG
, respectively, have skew symmetry under 

combined column reversal plus row reversal: 

, 1

1 , 2

ij K i K j

ij K i K j

d d

g g

! + !

+ ! + !

= !

= !
. (15) 

( )
D

N

CG
and ( )G N

CG
 applied to +

v  and +
f  satisfy the order-of-accuracy and conservation criteria 

on[ ]0
,
N

z z , and likewise ( )
D

M

CG
 and ( )G M

CG
 applied to !

v  and !
f  satisfy the order-of-accuracy and 

conservation criteria on[ ]0,Mz z
!

. Thus, the matrix operators defined by  

( )

( )

( )

( )

D 0
D ,

0 D

G 0
G ,

0 G

M

CG

N

CG

M

CG

N

CG

! "
= # $
# $% &

! "
= # $
# $% &

 (16) 

applied to (discontinuous) v and f , satisfy the conservation and order-of-accuracy criteria on the 

full interval[ ],
M N

z z
!

. To emphasize the centro-skew-symmetry, we write out explicitly the 

portion of D centered on the discontinuity, 
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1 27 27 1
0 0 0 0 0 0 0 0 0 0

24 24 24 24

1 27 27 1
0 0 0 0 0 0 0 0 0 0

24 24 24 24

25 129 1165 201 909 1045
0 0 0 0 0 0 0 0
15576 2596 5192 514 1298 1142

D
1045 909 201 1165 129 25

0 0 0 0 0 0 0 0
1142 1298 514 5192 2596 15576

1 27
0 0 0 0 0 0 0

24 24

! !

! !

! ! !

=

! ! !

!

! ! ! ! ! ! ! ! ! ! ! ! ! !

" "

" "

" "

" "

"
27 1

0 0 0
24 24

1 27 27 1
0 0 0 0 0 0 0 0 0 0

24 24 24 24

" #
$ %
$ %
$ %
$ %
$ %
$ %
$ %
$ %
$ %
$ %
$ %
$ %
$ %!
$ %
$ %
$ %! !
$ %
$ %& '

"

" "

! ! ! ! ! ! ! ! ! ! ! ! ! !

.      (17) 

Note that, away from the discontinuity, both mimetic operators D and G reduce to the standard 

staggered, centered, fourth-order difference operator (e.g., Levander, 1988) with 

weights( )1 24,27 24, 27 24,1 24! ! .  

In the following section, we will make explicit use of the stencils comprised in G and D.  

We will refer to each coefficient by its location in the ( )
D

K

CG
 and ( )G K

CG
 matrices, thus 

1775/528! corresponds to g11, and so on. 

Mimetic Operators and Split Nodes (MOSN) 

This section focuses on the application of operators G and D in the discretizaton of the 

elastodynamic system (1) - (2), and the new TSN implementation of the faulting boundary 

conditions. Fig. 2 depicts the 2D SSG used in the spatial discretization of the medium, material 

properties and elastic fields. Only the part of the grid on the positive side of the fault is shown. 

Indices for grid points at which displacement component ux are located are integer pairs (i,j), 

while indices for uz and the 3 stress components are offset from (i,j) by ±1/2 in one or two 

directions. Density is defined at the same locations as ux, while Lame constants are defined at 

grid points that coincide with normal stresses. Thus, discrete values of material properties are 

indexed as ρi,j, λ i+1/2,j, and µi+1/2,j relative to the grid point (i,j). We use averaging to interpolate 

material properties at the grid points where they are required. In the case of an interior node, that 
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is, for (i,j) not on the fault plane,  the averaging formulas proposed by Graves (1996) (arithmetic 

for density and harmonic for Lame constants) are used to approximate density at the grid point 

(i+1/2,j+1/2) and shear modulus at the node (i,j+1/2), i.e., 

( )

( )

1/2, 1/2 , , 1 1, 1, 1

1 1 1 1 1
, 1/2 1/2, 1/2, 1/2, 1 1/2, 1

1
,

4

4

i j i j i j i j i j

i j i j i j i j i j

! ! ! ! !

µ µ µ µ µ

+ + + + + +

" " " " "
+ " + " + + +

= + + +

= + + +

. (18) 

These expressions have to be modified for nodal values on the fault plane, as noted below. 

 We approximate all the derivatives with respect to x required by (1) and (2) using the 

usual staggered, centered fourth-order difference stencil ( )1 24,27 24, 27 24,1 24! !  (e.g., 

Levander, 1988). To accommodate the discontinuity at the fault plane, the z derivatives in 

equations (1) and (2) are instead approximated by the difference operators D and G given in 

(16), in the manner detailed later in this section. However, as we have already noted, away from 

the fault the latter operators also reduce to the standard stencil. Thus, apart from the immediate 

vicinity of the fault, our method is identical to the usual fourth-order FD method. 

 We take the fault plane to be at z = 0, with index 
0
j  (note that we set 

0
0j =  in 

describing the mimetic differentiators in the previous section). At the fault plane nodes, both the 

material properties ( ), ,! " µ  and the discontinuous field variables ( ),
x xx
u !  are assigned 

separately to the two parts of the split nodes, with the two parts denoted
i

! ± , 
1 2i

!
±

+
, 

1 2i
µ±

+ , ( )x
i

u
± , 

and( )
1 2i

xx
!

+

± . Since all split variables are indicated by the presence of plus or minus superscripts, 

and all are located on the fault plane, the j index is redundant, and we suppress it for the split 

variables. We follow DD07 and apply a one-sided averaging approach to interpolate density at 

the i+1/2 split node and shear modulus at the i split node, i.e., 
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( ) ( ) ( )
1

1 1

1/2 1 1/2 1/2

1
, 2

2
i i i i i i

! ! ! µ µ µ
"" "

± ± ± ± ± ±

+ + " +
# $= + = +% &' (

. (19) 

Dalguer et al. (2006) have shown that this material-properties averaging scheme performs well 

on, for example, the very challenging problem of rupture on an interface separating materials of 

contrasting elastic properties. When x derivatives of split quantities are required, we form a 

separate plus- and minus-side derivatives, using the plus- and minus-indexed quantities, 

respectively, still with the standard fourth-order stencil (since there is no discontinuity crossed in 

the x direction, even though the derivative itself is discontinuous in the z direction). 

To apply D and G to z differentiation at and near the fault, we introduce a special 

arrangement of discrete fields at the fault. This arrangement brings our problem into 

correspondence with the arrangement of function evaluations in vectors v and f (Equations 9-12) 

used for the construction of D and G in the previous section.  

First, we consider lines of constant (integer) values of the x index i, that is, lines parallel 

to the z axis and containing the split 
x
u
±  sites. At each of those split node sites (semi-circles in 

Fig. 2), we locate an extra evaluation of the continuous stress component τxz , denoted by( )*xz
i

! . 

This extra function evaluation is required to conform to the mimetic formulation, i.e., for fixed i, 

( )x ij
u (augmented by( )x

i

u
± ) takes the role of v (( )x

i

u
± taking the role of v± ), and ( )

, 1 2xz i j
!

+
 

(augmented by( )*xz
i

! ) takes the role of f (( )*xz
i

! taking the role of
0
f ). Summarizing this 

correspondence for constant integer i, we have: 

 
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )

0 0 0 0

0 0 0 0

, 2 , 1 , 1 , 2

* *

, 3/2 , 1/2 , 1/2 , 3/2

 corresponds to ..., , , , , , ,...

 corresponds to ..., , , , , , ,...

T

x x x x x xi j i j i j i ji i

T

xz xz xz xz xz xzi j i j i j i ji i

u u u u u u

! ! ! ! ! !

" +

" " + +

" " + +

v

f
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Then, z differentiation at fixed integer i is performed using operator D to differentiate 
x
u  and 

operator G to differentiate
xz

! .  

Second, we consider line of constant half-integer values 1 2i +  of the x index, containing 

the split 
xx

!
±  sites. No z differentiation of 

xx
!  is required in this problem, and the other fields 

present are continuous, so we could have used ordinary two-sided differentiation along these 

lines. However, a natural generalization of our problem would be to allow a discontinuity in the 

normal displacement 
z
u  on the fault, that is, allow fault opening (see, e.g., the formulation of 

D05). To allow for this generalization in the future, we use the mimetic differentiators on the 

1 2i +  lines as well. Analogously to the previous case, we locate an extra evaluation of the 

displacement
z
u , denoted by( )*

1 2
z
i

u
+

, at the split 
xx

!
±  site (triangles in Fig. 2). This time, for 

fixed 1 2i + , ( )
1 2,zz i j

!
+

 (including the fault-plane value( )
01 2,zz i j

!
+

) takes the role of v (with 

( )
01 2,zz i j

!
+

taking the roles ofv v
! +
= ), and ( )

1 2, 1 2z i j
u

+ +
 (augmented by( )*

1 2
z
i

u
+

) takes the role of f 

(with ( )*
1 2

z
i

u
+

 taking the role of
0
f ) and in the generalization to discontinuous

z
u , we would have 

split values
z
u
± , and 

0
f  would be replaced in the mimetic formulation by unequal 

values ( )
1 2

z i
f u± ±

+
= ) . Summarizing the correspondence for constant half-integer 1 2i + , we 

have: 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )
0 0 0 0 0 0

0 0 0 0

1 2, 2 1 2, 1 1 2, 1 2, 1 2, 1 1 2, 2

* *

1 2, 1 2, 1 2, 1 2,1 2 1 23 2 1 2 1 2 3 2

 corresponds to ..., , , , , , , ...

 corresponds to ..., , , , , , , ...

T

zz zz zz zz zz zzi j i j i j i j i j i j

T

z z z z z zi j i j i j i ji i
u u u u u u

! ! ! ! ! !
+ " + " + + + + + +

+ " + " + + + ++ +

v

f

 

Then, z differentiation at fixed half-integer index 1 2i + is performed using operator D to 

differentiate 
zz

!  and operator G to differentiate
z
u . 
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Once we have approximated all spatial derivatives present in system (1)-(2), 

displacement fields are stepped in time at every interior grid point (
0

j j! ), by an explicit and 

second-order discretization of the time derivatives present in (1).  

 Next, we explain the numerical treatment of faulting boundary conditions. The 

application of the TSN method at a particular 
x
u
±  split node (integer index i), comprises two steps 

(Andrews, 1999): (i) find a total trial shear traction 
i
T!

 that gives no slip velocity (continuity 

of
x
u! ), and (ii) correct this value to the actual total shear traction 

i
T  using a constitutive law that 

models the progress of the rupture and subsequent resistance to sliding. This algorithm is well 

suited for the case of a spontaneous rupture, where step (i) uses the discrete version of equation 

of motion (1.1) to predict
i
T! , followed by the correction step (ii) that imposes boundary 

conditions (4) and (5) and the friction model (6) and (7). On the other hand, in the case of the 

self-similar problem stated above (equations (1)–(3)), condition (3) yields the exact total shear 

traction 
i
T =0, which reduces the TSN treatment just to step (ii).  

We describe the implementation of steps (i) and (ii), letting h denote the spatial step in 

both directions x and z, while Δt is the time step. At the split node (
0

,i j ) and instant t, the 

application of central differences in time and operator G to (1.1) yields,  

[ ] [ ]
0 0

* 1611 12
' , 1/2 , 9/2

( / 2) ( / 2)

                ( ) ( ) ( ) ( ) ,

x i x i

xx x i xz i xz i j xz i j

u t t u t t

gg gt
t t t t

h h h
! ! ! !

"

± ±

±

± ±±

# $ # $+ % = &%' ( ' (
% ) *# $ # $+ ± ± ± ±+ ,' ( ' (- .

! !

"

 (20) 

from which (via a second application of the central difference operator in time) 

( ) ( ) ( / 2) .
x i x i x i
u t t u t t u t t
± ± ±! " ! " ! "+ # = + # + #$ % $ % $ %!  (21) 

To emphasize the physical interpretation, and facilitate comparison with previous formulations 

(e.g., D05, DD07) we can rewrite (20) in the form of a force balance. In doing so, we identify 
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split nodal masses 3
2

i i
M h!± ±

=  at this location. Then we identify the terms in (20) involving 

stresses other than the fault-plane traction *

xz
!  as the restoring forces on the two parts of the split 

node, denoting them as
i
R

± . Finally, in anticipation of applying the boundary conditions in terms 

of absolute stress levels, rewrite the fault-plane traction in terms of total shear traction T (instead 

of *

xz
! , which is shear traction relative to its initial static equilibrium value). The result is that (20) 

takes the form   

( )
2

1
011( / 2) ( / 2) ( ) ( )

2
x x i xzi i i i

g h
u t t u t t t M R t T t !

"
± ± ± ±# $

% & % & % & % &+ ' = "' + ' ± "( )* + * + * + * +
, -

! ! , (22) 

where 

3
2

i i
M h!± ±

=  (23) 

 

[ ] [ ]
0 0

3

1612
, , 1/2 , 9/2

( ) ( ) ( ) ( )
2

xx x xz xzi j i ji i

ggh
R t t t t

h h
! ! !± ±

± ±

" #
$ % $ %= ± ± ±& '( ) ( )

* +
! , (24) 

and  

[ ] * 0( ) ( )
i xz xzi i i

T t t! !" # " #= +$ % $ % . (25) 

The origin of the change of sign on the 
xz

!  terms (i.e., the use of plus sign forR+ , minus sign for 

R
!  in (24)) can be understood from the form of the G operator as shown in (16): the plus-side G 

differentiation operator at a split node uses the 6 coefficients
11
g , 

16
..., g  at the beginning of the 

top row of ( )
G

N

CG
, whereas the minus-side differentiation uses the coefficients at the end of the 

bottom row of ( )
G

M

CG
, and because of the centro-skew symmetry (14), the latter are just the 

negatives of the former, arranged in reverse order.  

 The total trial traction 
i
T! that enforces zero slip velocity (i.e.,

x x
u u
+ !
=! ! ) at time t + Δt/2 in 

equation (20) is  
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0 1
( ) ( ) ( ) ( / 2) ( / 2)

xz i x x
i i ii

T t R t M R t M u t t u t t
t

! " + + # # + #$ %& ' & ' & ' & '= + # # #( # #() *+ , + , + ,+ , (- .
! " " , (26) 

where 

1

2

11

2
1 1i i
M M

g h
!

"
+ "# $= +% & . (27) 

This equation for 
i
T!  represents the outcome of step (i) of the TSN method. Step (ii) sets a 

definite value of the total shear traction 
i
T  that satisfies boundary conditions (4) and (5) and 

imposes the friction law (6) and (7), 

[ ]
( ) ; ( )

( )
sgn ( )

i i c

i

c i

T t T t

T t

T t

!

!

" # $ # $ %& ' ( ' (
= )

# $& ' (*

! !

!
. (28) 

Because the friction coefficient that determines 
c

!  is here taken to be slip dependent only, it can 

be updated explicitly, using (6) (with the normal stress at i approximated by 

( ) ( ) ( ) ( )
0 0 0 03 2, 1 2, 1 2, 3 2,

0.0625 9 9
zz zz zz zzi j i j i j i j

! ! ! !
" " + +

# $" + + "
% &

). In the case of a friction coefficient 

dependent upon slip rate and one or more state variables, this step is more complicated, and 

MOSN updates the traction, slip velocity and state variables simultaneously at a given node, 

using an implicit solver (Rojas et al., 2007). Notice conditions (4) and (5) are fulfilled under 

either case that holds in equation (28). In particular, tangential velocity at t +Δt/2 is continuous 

when 
i
T!  is less than the frictional strength τc. Substitution of [ ]( )

i
T t  in (22) followed by the 

application of equation (21) allow the calculation of split displacements ( )
x

i

u t t
±! "+ #$ % . 

Finally, we calculate ( )*

1 2
z

i

u t t
+

! "+ #$ % from the condition of continuity of normal traction 

at the fault plane. This calculation follows closely the scheme of DD07, but using the mimetic 

differentiation formulas for all fault-normal derivatives and the standard staggered fourth- order 
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stencil for all fault-parallel derivatives. As in DD07, this step has to precede the determination of 

the split stress( )
1/2

xx
i

!
±

+
, since the latter calculation requires the z derivative of 

z
u  at the fault 

plane. 

Artificial viscosity 

In order to attenuate spurious high-frequency oscillations observed in the numerical 

solutions of crack problems, artificial damping terms have been considered in finite differences 

(e.g., Day, 1982; Virieux & Madariaga, 1982; D05; DD07), finite elements (e.g., Oglesby et al., 

1998), and finite volume (Ben Jemaa et al., 2007) methods. Numerical dispersion arises from the 

use of low-order spatial differentiation, and is a significant source of error in modeling abrupt 

stress drops experienced at the rupture fronts, which excite the short wavelengths most subject to 

dispersion. We expect less severe numerical dispersion from MOSN, compared with second-

order methods, but we nonetheless explore the contribution of an artificial viscous damping in 

MOSN. Following D05, we compute damped stress terms of Kelvin-Voigt form[ ]
1/2,xx i j

!
+

, 

[ ]
1/2,zz i j

!
+

and [ ]
, 1/2xz i j

!
+

using the results from the discretized stress-strain relations (2). For 

instance, 

[ ] [ ] [ ]
1/2, 1/2, 1/2,xx xx xxi j i j i j

t! ! " !
+ + +

= + # ! . (29) 

Similar definitions apply to
zz

!  and
xz

! . Once calculated, !  replaces !  in the discrete 

counterparts of equations of motion (1). The coefficient η is a dimensionless damping parameter 

whose effect on MOSN solutions will be discussed in later sections. This procedure represents a 

volumetric damping and its effect on the TSN computation is introduced through the restoring 

force terms. Equation (24) is rewritten in terms of damped stresses as, 

[ ] [ ]
0 0

3

1612
, , 1/2 , 9/2

( ) ( ) ( ) ( )
2

xx x xz xzi j i ji i

ggh
R t t t t

h h
! ! !± ±

± ±

" #
$ % $ %= ± ± ±& '( ) ( )

* +
! . (30) 
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NUMERICAL TEST 1: KOSTROV’S PROBLEM  

In this section, we present the first validation test of the MOSN algorithm by solving 

numerically the self-similar crack problem stated above (equations (1)–(3)). This test is similar to 

the one presented by Ben Jemaa et al., 2007, where the medium corresponds to a Poisson solid 

(i.e., 3! " = ) with α = 4000 m/s and the rupture velocity is set as vR = 0.5α. The domain is 

uniformly discretized in both directions x and z by a common grid interval h. Along the fault, a 

first receiver is placed at the point where the rupture initiates, followed by four more equidistant 

receivers (at 2 km intervals). Fig. 3 compares the MOSN time histories of slip and incremental 

shear stress at these locations with the corresponding time histories for the analytical solution. 

Both numerical and analytical slip histories have been scaled using the exact slip experienced at 

the first location (x = 0) over the time interval of the calculation (t = 5 s); and similarly, 

incremental stress fields are divided by the magnitude 0

xz
! , yielding a post-rupture level of -1. 

0

xz
! Figs 3a – 3c, show the effect of reducing h on the accuracy of the numerical solution, when 

no damping (η = 0) is used. As h decreases, MOSN solutions approach the analytical solutions, 

in both slip and shear stress fields. Figs 3a – 3c also show how grid refinement reduces the 

amplitudes of spurious oscillations, in the absence of numerical damping. Then Fig. 3d depicts 

the additional suppression of the spurious oscillations when a damping parameter of η = 0.1 is 

employed (with h = 50 m). The suppression of oscillations when using η>0 comes at the price of 

introducing a small (< 10%) increase in the misfit to the S wave stress peak that precedes rupture 

arrival. For the solution of more realistic, nonlinear problems (where strong coupling may occur 

among different frequency components of the solution), a judicious, case by case assessment of 

such tradeoffs is useful. Misfits for the Kostrov problem are summarized in quantitative form in 

Tables 1 and 2, for various combinations of grid spacing h and parameter η. Table 1 shows 
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relative RMS errors in slip histories at each of five receivers during the entire simulation (t = 5 

s), and Table 2 summarizes relative RMS errors in truncated shear stress histories (in which the 

misfit calculation is truncated when the analytical stress drops to its minimum right after the S-

wave arrival, to avoid the shear stress singularity).  

 

NUMERICAL TEST 2: SPONTANEOUS RUPTURE  

We next use the MOSN algorithm to model the spontaneous propagation of rupture along 

a finite fault, and the associated in-plane motion. The mathematical formulation for this problem 

corresponds to equations (1), (2), with boundary conditions stated in equations (4)-(7). Our test 

case represents a 2D analog of Version 3 of the Southern California Earthquake Center (SCEC) 

benchmark problem proposed by Harris et al. (2004). Fig. 4 depicts an elastic, homogeneous, 

and isotropic plane where rupture is allowed on a 30 km long fault segment along the x axis. 

Material properties are α = 6000 m/s, β = 3464 m/s, and ρ = 2670 kg/m3. Distributions of the 

initial stress field and frictional parameters required in (6) and (7) are specified in Table 3. 

Nucleation occurs in a 3 km long patch centered on the fault where the initial shear stress 

exceeds the static yield stress by approximately 0.44%. Once it initiates, the rupture propagates 

bilaterally through the fault, governed by the fracture criterion (6) and (7). Beyond the fault 

segment, the static frictional strength is infinite and thus stops the further extension of the 

rupture.  

Because this test problem lacks an analytical solution, we assess numerical results 

generated by the MOSN algorithm through comparison with a reference solution computed by 

the second-order accurate DFM algorithm (Day, 1982), the accuracy of which has been 

quantified by comparison with a boundary integral method (D05). We compare MOSN solutions 

against a high-resolution DFM solution (h = 0.0125 km) of the test problem, following the 
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comparison methodology introduced by D05. This reference solution is denoted as DFM0.0125 

according to the notation used by D05 to distinguish among multiple-resolution solutions. We 

used artificial-viscosity parameter ! =0.1 for the reference solution. However, the reference 

solution has no significant sensitivity to this parameter. This insensitivity is because, for a given 

! , the absorption-wavelength spectrum shifts in proportion to h (D05), and, in the case of our 

reference solution, h is (by design) far separated from the cohesive zone dimension (which in this 

test problem is the minimum dimension of physical significance). We name MOSN solutions 

using the same convention to designate the grid interval (given in km) employed in their 

computations; thus MOSN0.0375 denotes our numerical solution for h = 0.0375 km, for 

instance. Ten different approximations to our test case were calculated by the MOSN method by 

varying h from 0.0375 km to 0.5 km (see Table 4). The same grid size was used in both 

directions x and z.  

Metrics 

D05 proposed three error metrics for quantitative assessment of approximate solutions to 

dynamic rupture problems, relative to a reference solution: (i) root mean square (RMS) average 

of the rupture time differences, where rupture time is defined as the time at which slip velocity 

first exceeds 1 mm/s; (ii) RMS average of the differences in final slip, and (iii) RMS average of 

the differences in peak values of slip velocity. The rupture times are discrete time steps (but 

DD07 showed that further refining the rupture time estimates by taking much smaller time steps 

than required for stability does not significantly change the value of this metric as a function of 

spatial step h).  In our test case, these metrics are calculated as sums over each grid point along 

the fault segment (-30 km < x < 30 km), for each MOSN solution with respect to the reference 

solution DFM0.0125. We report fractional values of these metrics relative to the RMS average 
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values of 2.93 s, 5.89 m, 6.59 m/s, for rupture time, final slip, and peak slip velocity, respectively 

(as given by DFM0.0125).  

Solution dependence on damping parameter η 

We first examine the effect of the artificial damping parameter η on dispersion and 

accuracy properties of the MOSN algorithm. Obviously, the larger the value of η, the smaller the 

amplitude of high-frequency oscillations in the numerical solution. However, over-damped 

solutions may poorly represent important features of the continuous solution like, for instance, 

maximum or minimum values. Metrics introduced above are used to determine a preferred value 

of η, at least for our test case. The test problem is solved using ten different grid intervals (h 

values are given in Table 4) and a range of values of η in the interval [0, 0.6]. Then, for each 

simulation corresponding to a pair (h,η), the two error metrics of rupture time and peak slip 

velocity are calculated. The final slip metric was not involved in this analysis, given its 

negligible sensitivity to small variations of the damping parameterη. This study parallels that 

presented in DD07, except that in the latter the general 3D Version 3 SCEC rupture problem 

(referred above) was solved and damped stress terms were used only in the TSN treatment of 

jump conditions. 

Fig. 5(a) shows curves of RMS misfit in rupture time as a function of η, for each grid 

interval h. The accuracy of MOSN solutions in rupture time is only weakly dependent on η, 

especially for grid interval of h = 0.2 km or smaller, as indicated by RMS misfit curves that are 

almost parallel to the η - axis, with a slight decreasing pattern as η increases (slopes at η = 0.5 

are approximately -0.03, -0.11, -0.08, -0.3, -0.29 and 0.4 for the case of h = 0.0375, 0.05, 0.075, 

0.1, 0.15, and 0.2 km, respectively). On the other hand, for larger grid intervals (h ~0.3 km and 
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larger), precision worsens significantly as η  increases constraining optimal values of η  to a 

neighborhood of η = 0.1.  

Fig. 5(b) shows the sensitivity of MOSN solutions to! , in terms of the peak slip rate 

metric. Error curves are visibly sensitive to the damping parameter even in the case of small grid 

sizes. For example, error increases by nearly a factor of 3 from 7.5% in the case of η = 0 to 19% 

at η = 0.6, when solutions using h = 0.05 km are considered. In addition, accuracy monotonically 

degrades with increasing η  beyond 0.1, which suggests choosing a preferred η in the interval (0, 

0.1]. This conclusion is consistent with the study above based on rupture times, and similar to the 

conclusions of D05 (who on the basis of the rupture-time metric preferred η = ~0.1), and we 

adopt a preferred value η = 0.075, which gives good results for both metrics. For this η value, 

and grid sizes up to 0.15 km, rupture-time error does not exceed 0.6% and peak slip rate error 

does not exceed 12.5% (see also Table 4).The similar behavior of DFM and MOSN with respect 

to the viscosity parameter is to be expected, as they use analogous volumetric viscous terms (in 

contrast to the surface viscosity term used in DD07, for example).  

Effect of grid resolution on solution accuracy  

In this section, we quantify the dependence of solution accuracy on the grid size h. A set 

of ten MOSN solutions are computed for the range 0.0375 km ≤ h ≤ 0.5 km, using the preferred 

artificial damping parameter η = 0.075. Then, the error metrics of rupture time, peak slip rate, 

and final slip are calculated from these solutions, taking DFM0.0125 as the reference solution. 

For comparison, we also compute DFM solutions to our test problem, and their error metrics 

relative to DFM0.0125, for the same range of h (and, η = 0.1). Both schemes, MOSN and DFM, 

share the same time step Δt, for each grid size h, given by Δt = 0.5hα-1, where α = 6000 m/s.  
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As discussed in, e.g., D05, a meaningful assessment of solution accuracy for this class of 

crack problems, in terms of grid spacing h, should relate h to an intrinsic length scale known as 

cohesive zone length. The cohesive zone is the portion of the fault plane behind the crack tip 

where the shear stress decreases from its static value to its dynamic value, and slip path-length l 

satisfies 0 ≤ l ≤ d0 (e.g. Ida, 1972). In the cohesive zone, shear stress and slip rate vary rapidly, 

and proper numerical resolution of those changes is crucial for capturing the maximum slip rates 

and rupture propagation speeds. Numerical accuracy is dependent on the number of grid points 

that discretize the cohesive zone, a quantity that D05 and DD07 call
c
N , defined as the ratio of 

the width of the cohesive zone, Λ, to the grid interval h (i.e., 
c
N = Λ/h).  

Because Λ varies as the rupture propagates, the problem solution yields a time series of 

values, 
ci
N , each a local measure of grid resolution. Fig. 6(a) shows results for DFM0.0125. The 

figure was constructed by plotting the rupture time (continuous line) and time at which shear 

stress first reaches its dynamic frictional value 
n d

! µ  (dashed line), with the cohesive zone 

indicated by the filled area between those times (because of the problem symmetry, only 15km < 

x < 30km is shown). Fig. 6(b) depicts the corresponding sequence of values Λi. For comparison, 

we also calculate Λi for solutions DFM0.05, DFM0.1, MOSN0.05, and MOSN0.1, and these 

results are also shown in Fig. 6(b). As expected, the longer the rupture propagates, the smaller 

the cohesive zone (e.g., Andrews, 1976a), and therefore the more significant the inaccuracies in 

the determination of its size. For the same grid resolution, the algorithm MOSN yields more 

accurate values of Λi than does DFM, consistent with MOSN’s higher accuracy in the 

determination of rupture times and shear stress (as discussed below). 

We follow D05 and use the median of 
ci
N  values along the in-plane axis, 

c
N , as a global 

measure of cohesive zone resolution. From the reference solution DFM0.0125, excluding values 
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within the nucleation zone, we calculate a median value !  = 0.258 km for our test problem, so 

Nc =0.258/h.  

We next examine the RMS misfits given by both MOSN and DFM solutions, and relate 

these errors to the median cohesive resolution
c
N . Misfits in rupture time, slip rate, and final slip, 

are respectively shown in Figs 7, 8, and 9, and summarized in Table 4. MOSN misfits are plotted 

in open symbols, while solid symbols are used for DFM misfits. Note that the abscissa has been 

double labeled to show both grid interval h (on the bottom) and corresponding 
c
N  (on the top).   

In Fig. 7, the regression line to MOSN misfits has slope of 0.97, practically parallel to the 

dotted line that scales the time steps used in all these calculations. That is, MOSN errors have, in 

this metric, a nearly linear dependence upon grid spacing h. MOSN yields rupture time misfits 

not larger than 1%, provided that the median cohesive resolution is at least 
c
N = 1, while 

c
N ≥ 

0.52 assures errors less than 2% in this metric (Table 4). On the other hand, achieving DFM 

errors (Table 4) as small as 1% demands a value for  
c
N  approximately twice as large. In the 

case of a coarse grid, where h = 0.5 km and Nc = 0.52, DFM misfits may be up 7%. However, 

for smaller grid sizes, MOSN loses its advantage relative to DFM, because the latter follows a 

super-linear dependence upon h, with average slope 1.53 (dashed line in Fig. 8) (which, 

incidentally, differs from the corresponding value of ~3 found for DFM in a 3D test in D05). 

Thus, DFM displays a faster convergence rate than MOSN, while MOSN remains more accurate 

than DFM for all h ≥ 0.05 km. (
c
N <~6), and is thus more computationally efficient for 

resolution values in this range. If we take 1% as a representative target for solution accuracy in 

practical applications, MOSN achieves the target with h roughly twice as large (
c
N half as large) 

as required for DFM.  
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Fig. 8 shows that MOSN and DFM have similar accuracy in slip rate, both algorithms 

having slip-rate errors less than 10% for 
c
N  ≥ 2.6 (h ≤ 0.1 km). In this metric, the errors of both 

methods show a considerable scatter from power laws in h, however. The best fitting power-law 

approximations (also shown in Fig. 8) are similar, with exponents 0.85 and 0.68, respectively, 

and the difference between these exponents does not appear to be significant, in light of the 

scatter. In fact, an equally valid characterization of the figure is that the errors stagnate at around 

5%, and convergent behavior is not well demonstrated in this metric over the range of h available 

here.  

Fig. 9 illustrates an interesting difference in the way that RMS misfits in final slip behave 

as grid spacing varies, in the cases of MOSN and DFM. In the range 0.0375 km ≤  h ≤ 0.1 km, 

i.e., for a median cohesive resolution
c
N  ≥ 2.6, both algorithms yield almost undistinguishable 

misfits whose dependence on h is power law, and approximately linear (power-law exponents 

1.14, and 1.28, respectively). Then, beyond h = 0.1 km, MOSN misfits increase with h following 

the same power law, at least for grid spacing not larger than 0.5 km (
c
N ≥ 0.5). On the other 

hand, DFM misfits experience a transition in the range 0.1 km < h < 0.2 km, i.e., 1.3 < Nc  < 2.6, 

where they grow more than linearly. Then, in the range 0.2 km ≤ h ≤ 0.5 km, the DFM errors 

resume power law behavior, with slope 1.24, which indicates that DFM recovers its original 

order of convergence after the transition regime. As a last comparative comment, notice that for 

a median cohesive resolution of 
c
N ≥ 3.5, errors in this metric are less than 1% for both 

algorithms. However, when 
c
N = 1 (h = 0.25 km), MOSN misfit is still small, about 3.3%, while 

DFM error reaches nearly 19%. Misfits in final slip for both algorithms are given in Table 4.  
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Waveform comparison  

Figs 10, 11, and 12 compare DFM0.15 and MOSN0.15 time histories of slip rate, slip, 

and total shear stress, respectively. These time series correspond to the point P, located along the 

fault segment, 12.5 km away from the center of the nucleation patch (Fig. 4). No filtering process 

has been used on these signals, i.e., direct outputs from DFM and MOSN algorithms were 

plotted for the purpose of examining numerical artifacts (e.g., numerical dispersion). As shown 

in Table 4, the median cohesive resolution is 
c
N = 1.7 in this case. However, attending to the 

physical contraction experienced by the cohesive zone as the rupture propagates, Λ is about 0.2 

km when the crack reaches the point P (Fig. 6b). Therefore, the actual local resolution available 

across the cohesive zone at point P is 0.2/h ≈1.3 (little more than one grid point). Again, solution 

DFM0.0125 is used as a reference solution.  

Slip rate time histories (Fig. 10) show the expected effects of anomalous numerical 

dispersion: a time shift of the post-rupture peak, and artificial oscillations following the peak. 

The discreteness of the rupture advance may be a further contributor to the artificial oscillations, 

the latter effect being most pronounced when the cohesive zone is poorly resolved. The inset plot 

in Fig. 10 shows the delayed arrival of the peak value of slip rate in the DFM0.15 solution 

relative to the reference solution DFM0.0125. Conversely, MOSN0.15 solution does not have a 

noticeable time shift of the peak value. To explore and quantify the behavior of this numerical 

artifact in the solutions given by both algorithms, MOSN and DFM, we measured these time 

shifts for the whole set of solutions computed for this problem. Relative to the reference peak 

value  (4.28 s) given by DFM0.0125, time shifts are -0.1%, -0.17%, -0.2%, -0.2%, -0.1%, 1.9%, 

0.7%, 1.6%, -0.05%, 1.2% in the case of MOSN solutions, for grid sizes h = 0.0375, 0.05, 0.075, 

0.1, 0.15, 0.2, 0.25, 0.3, 0.375, and 0.5 km, respectively. Negative values represent earlier 

occurrences of the peak value, while positive values correspond to delayed arrivals. On the other 
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hand, DFM solutions yield relative time shifts of 0.04%, 0.5%, 1.4%, 1.8%, 2.7%, 5.8%, 5%, 

6.8%, 6.5 %, and 9.9 %, for the same set of grid sizes. Together with Fig. 7, these results confirm 

that the numerical rupture velocity is influenced by the order of accuracy used in discretizing the 

fault boundary conditions. The rupture front travels slower (relative to the reference solution) in 

DFM solutions, for all 
c
N  (at least in the range 0.5 ≤ Nc ≤ 6.9).  In contrast, in MOSN solutions 

the rupture speed is higher than in the reference solution in fine grids (Nc ≥ 1.7), and lower in 

coarser grids (Nc ≤ 1.3). These time shifts represent the cumulative effect of rupture velocity 

errors between the nucleation zone and point P; their magnitudes are consistent with the global 

misfits in rupture arrival times calculated along the whole fault (previously studied). MOSN 

errors in peak-velocity timing do not exceed 2%, which is also true for MOSN rupture time 

errors. Similarly, in the case of DFM solutions, both time shifts of the peak slip-rate and rupture 

time misfits are not greater than 10% (Table 4). Actually, the former follow a super linear 

increase with h (with average slope 1.72) that nearly coincides with the grid dependence of the 

latter (with average slope 1.53). 

The other effect of numerical dispersion in the slip rate time series is the occurrence of 

spurious oscillations that follow the peak value, with rapidly-decreasing amplitudes (Fig. 10). 

The amplitude of the first (and largest) oscillation following the initial peak is 7.6 % of peak 

velocity in the case of MOSN0.15, compared with 12.9% for the DFM0.15 solution. The 

apparent frequencies of the oscillations correspond to S wavelengths (λS) of 1.8h, and 5h, 

respectively. Thus, this example suggests that MOSN preserves slip-velocity features with 

minimum wavelengths two to three times shorter than the minimum-wavelength features 

preserved by DFM. This behavior corresponds roughly to differences in numerical dispersion 

expected (in linear wave propagation) on the basis of the order of accuracy used in the spatial 
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discretization, fourth order in the case of MOSN, and second order for DFM. Finally, note that 

the timing and shape of stopping phases coming back from the two ends of the fault segment, 

and arriving at point P between 5 s and 6 s, are significantly better modeled in MOSN0.15 than 

in DFM0.15. 

Fig. 11 shows the almost indistinguishable MOSN0.15 and DFM0.15 time histories for 

the slip recorded at point P. The agreement of these approximations to the reference solution is 

nearly perfect, until they show a common discrepancy beginning at the time that stopping phases 

from the locked edges of the cracked fault reach point P (between, 5.5 s – 6 s). This kind of 

discrepancy in slip time series is common in rupture models with abrupt termination of the fault 

(DD07): because one grid interval separates the last grid point of the fault (at which slip is 

allowed) to the first grid point of the unbreakable medium (at which the fault is locked), an order 

h uncertainty on the specific point at which rupture ceases induces an ambiguity of the same 

order in the stopping-phase delays. 

 Shear stress time histories given by MOSN0.15 and DFM0.15 replicate each important 

feature seen in the reference solution, with the MOSN algorithm showing a modest improvement 

over DFM. In the magnified inset of the stress field (Fig. 12), critical values (either, maximum, 

or, minimum) reached by the reference solution are better reproduced by the MOSN scheme. For 

example, the first maximum (7.2 MPa increase above the initial stress level) is approximated by 

MOSN (6.9 MPa increase) with a relative error of about 4%, while the DFM approximation (5.9 

MPa increase) has relative error of ~18%. 

 

DISCUSSION AND CONCLUSIONS  

We have developed a split-node finite difference method for  modeling shear ruptures 

that is consistently fourth-order accurate in its spatial discretization, both in the interior of the 
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model and at the fault. The medium properties and elastic fields are discretized on a staggered 

grid with (apart from the fault) stresses and displacements at different points. The fault plane is 

discretized with split nodes that combine displacement and stress components at the same point, 

permitting all displacement and stress components to be located exactly along the fault plane.  

Consistent fourth-order accuracy is achieved through the use of mimetic operators and split 

nodes (MOSN). The former facilitate the one-sided numerical differentiation (in the fault-normal 

direction) that is required to preserve fourth-order accuracy in the presence of the discontinuities 

at the fault plane. The latter allows a natural representation of the fault discontinuity. 

Furthermore, the traction-at-split-node (TSN) formulation, i.e., coincident location of auxiliary 

shear-traction points at the split nodes, arises naturally within the staggered-grid mimetic 

framework when it is applied to a displacement discontinuity.  

 We have evaluated the MOSN method for two test problems entailing Mode II rupture 

propagation: the case of the propagation of a fixed-speed rupture (Kostrov’s problem), and the 

case of a spontaneous rupture with slip-dependent friction. In the former case, the convergence 

of numerical results to the analytical solution through grid refinement was shown by consistently 

decreasing RMS misfits on slip and shear stress (avoiding singularities) time series. In the latter 

case, we examined waveform characteristics and analyzed convergence using quantitative 

metrics. Compared with the second-order DFM method, slip-velocity waveforms from MOSN 

solutions show significant reduction in artifacts attributable to numerical dispersion, giving 

improved timing of stress and slip-velocity peaks and stopping phases, while substantially 

reducing the spurious oscillations of slip velocity that are characteristic of low-order FD 

solutions.  

 The convergence analysis revealed a linear dependence of MOSN errors on the grid size.  

This implies a slow convergence of this fourth-order method on fine grids. Somewhat 
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paradoxically, this means that MOSN is significantly more accurate than our second-order 

comparison code (DFM) for relatively coarse grids, but loses this advantage for very fine grids.  

If we take 1% accuracy in the rupture time metric to be a reasonable standard for practical 

application of the methods, MOSN has a considerable advantage, reaching the target accuracy 

with grid spacing h approximately twice as large as required by DFM (though MOSN has no 

comparable advantage for the slip-velocity metric). This result, combined with the reduced post-

rupture slip-velocity oscillations in MOSN solutions, mean that from a practical standpoint we 

have significant gains from the fourth-order formulation of MOSN. However, the poorer 

convergence relative to DFM, and its inability to improve the second-order results in the limit of 

small grid intervals, raises additional issues. 

 A potential reason for this behavior is the presence of gradient discontinuities in the 

linear slip-weakening (SW) friction law at zero slip and when the sliding equals the SW distance. 

These singularities in the friction model may introduce other high-order singularities in elastic 

fields around the evolving rupture (Ida, 1972), which would conflict with smoothness 

assumptions that are implicit in order-of-accuracy estimates for FD (and other) schemes. 

Preliminaries results of this paper therefore do not necessarily imply that finite-difference 

methods are limited to low-order accuracy when dealing with rupture problems. It may be that 

the potential benefits of high-order finite-difference methods will be more fully realized with the 

consideration of friction models with smooth evolution in terms of slip or slip rate. Examples of 

constitutive laws with these characteristics are the experimentally-based rate- and state-

dependent class of friction models (Ruina, 1983; Dietrich, 1986), and the laboratory-derived slip-

dependent model of Ohnaka and Shen, 1999. A common feature of these models is an initial re-

strengthening stage where friction evolves smoothly respect to slip (e.g., Bizarri et al., 2001). In 

particular, frictional traction governed by rate- and state-dependent models have an initial 
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velocity-strengthening stage that should ensure smoothness. We are currently examining 

convergence rates of MOSN with such models to assess the hypothesis that non-analyticity in the 

slip-dependent friction law is responsible for the apparent low-order convergence of MOSN. We 

are also examining a second factor that may contribute to the low convergence rate, which is the 

possibility that convergence is limited principally by the time discretization, which is second-

order, rather than by the spatial discretization. 

The current implementation of MOSN for two dimensions and Cartesian meshes, with a 

planar fault, can be seen as a first step towards the exploitation of high-order operators in finite 

difference rupture modeling. Accuracy and stability showed by MOSN in solving two in-plane 

crack problems leads us to note several possible generalizations of this method. First, MOSN 

could be extended to 3D domains and planar faults, using as a basis the successful adaptation of 

the TSN method to a 3D SSG introduced by DD07. An alternative effort may be focused in 

adapting MOSN to 2D or 3D curvilinear coordinates, allowing the solution of faulting boundary 

conditions along non-straight faults. Finally, while MOSN introduces 1D mimetic operators as a 

component of a 2D solution, we note that there are fully 2D (or 3D) mimetic formulations (i.e., 

FD discretizations that preserve the multi-dimensional adjoint relations between divergence and 

gradient) in the second order case (e.g., Hyman et al., 1997), and these have been applied to the 

rupture dynamics problem by Ely (2007). Generalization of those fully multidimensional 

mimetic formulations to fourth order (or higher), while possible in principle, presents rather 

formidable technical complications (Ely, 2007), however, compared with the use of the 1D 

operators proposed here, and the benefits would need to be weighed carefully against alternative 

formulations (e.g., spectral element, finite volume, discontinuous Galerkin, etc) that may offer 

comparable order of accuracy. 
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FIGURE LEGENDS 

Figure 1. Uniform grid for staggered differentiation of functions f and v using the difference 

operators D and G (constructed in Equation 16 from Castillo-Grone operators ( )
D

K

CG
 and ( )G K

CG
). 

The node 
0
0z =  is split to accommodate a possible discontinuity of function v. Locations of 

vector components ( )( ),..., , ,..., ( )
M N

v z v v v z
! +

!
=v  and ( )0 0( ),..., , ,..., ( )M Nf z f f f z

!
=f  are 

depicted. Quantities (Dv)j+1/2  and (Gf)j , (j integer) represent the approximations to dv/dz and 

df/dz calculated using operators D and G, respectively. 

 

Figure 2. Two-dimensional staggered grid used to discretize medium parameters and wave-field 

variables. Grid points located along the fault plane (double line at z = 0) are split into a plus (+) 

half point and a minus (-) half point to allow the TSN implementation of faulting boundary 

conditions. Extra evaluations of shear stress *

xz
!  and vertical displacement *

z
u are placed at the 

fault plane to permit the approximation of 
,xz z

! and 
,z z

u using the mimetic operator G. Apart from 

the split nodes and extra fault-plane function evaluations (as also used in DD07), this grid is the 

Standard Staggered Grid (SSG) (Madariaga, 1976; Virieux and Madariaga, 1982). 

 

Figure 3. MOSN solutions (circles) to the Kostrov problem are compared with analytical-

solution time series (lines). Figures 3(a) – 3(c), show the gain in accuracy of the numerical 

solution as spatial step h is reduced and the consequent reduction of spurious oscillations . RMS 

misfits in both slip and shear stress time histories are reported in Tables 1 and 2. Figures 3(d) 

shows the damping of high-frequency oscillations achieved by using a convenient artificial 

damping parameter (η = 0.1), which also leads to a gain in accuracy on slip results (see Table 1) 
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Figure 4. Two dimensional fault model for testing spontaneous rupture propagation. The thick 

line in the center represents the 3km long nucleation patch. The triangle corresponds to the 

receiver P located on the fault plane, 12.5 km from the center of the nucleation patch. At this 

location, time series of shear stress, slip rate, and slip are recorded and analyzed. Stress and 

frictional parameters for this fault model are given in Table 3. 

 

Figure 5. (a) RMS rupture time misfits as a function of the artificial damping parameter η for 

different grid sizes h. (b) RMS peak slip rate misfits as a function of the artificial damping 

parameter η for different grid sizes h. In both cases, misfits are calculated along the whole 30 km 

long fault using DFM0.0125 as a reference solution. 

 

Figure 6(a). Cohesive-zone development during rupture propagation. Reference solution 

DFM0.0125 has been used to approximate both rupture time (continuous line) and the later time 

when shear stress reaches its dynamic yielding stress (dashed line) equal to τd =-µd*σn (see Table 

3). 6(b). Size of the cohesive-zone as the rupture propagates in the interval [16.5, 30] Km 

(outside of the nucleation zone). Results using the reference solution DFM0.0125 (continuous 

line) are compared with those calculated from coarser-grid solutions DFM0.05, DFM0.1, 

MOSN0.05, and MOSN0.1. In both cases, only results for the right-half of the fault are shown 

due to the symmetry of the solution with respect to the center of the nucleation zone,. 

 

Figure 7. Rupture time misfits, relative the reference solution DFM0.0125, as a function of the 

grid size h. Differences are RMS averages along the 30 km long fault. Open circles are MOSN 

errors which follow a slope of 0.97. Filled circles represent DFM errors which follow a slope of 

1.53. The dashed line shows the dependence of time step t! on h. 
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Figure 8. Peak slip rate misfits, relative the reference solution DFM0.0125, as a function of the 

grid size h. Differences are RMS averages along the 30 km long fault. Open diamonds are 

MOSN errors, filled diamonds are DFM errors. Regression lines for MOSN (slope 0.85) and 

DFM (slope 0.68) are also shown.   

 

Figure 9. Misfits in final slip, relative the reference solution DFM0.0125, as a function of the 

grid size h. Differences are RMS averages along the 30 km long fault. Open squares are MOSN 

errors which follow a single line of slope of 1.14. Filled squares are DFM errors which follow, 

except for a transitional interval 0.1 km < x < 0.2 km, nearly the same slope (1.28 for x ≤ 0.1 and 

1.24 for x ≥ 0.2 km). 

 

Figure 10. Slip rate time histories at the fault plane point P marked in Figure 4. Solutions 

MOSN0.15 and DFM0.15 are compared with the reference solution DFM0.0125. 

 

Figure 11. Slip time histories at the fault plane point P marked in Figure 4. Solutions 

MOSN0.15 and DFM0.15 are compared with the reference solution DFM0.0125. 

 

Figure 12. Shear stress time histories at the fault plane point P marked in Figure 4 Solutions 

MOSN0.15 and DFM0.15 are compared with the reference solution DFM0.0125. 
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TABLES 

 
Table 1. Relative misfits of MOSN slip time histories at 5 receivers in a fixed-speed rupture 
simulation (Kostrov’s problem) 
 
 
h (m) η  RMS (%) 

at x = 0  
RMS (%) 

at x = 2 km 
RMS (%) 

at x = 4 km 
RMS (%) 

at x = 6 km 
RMS (%) 

at x = 8 km 
50 0 0.37 0.41 0.62 1.09 2.50 
100 0 0.73 0.86 1.27 1.94 4.12 
200 0 1.48 1.71 2.29 3.44 6.89 
50 0.1 0.26 0.38 0.50 0.52 1.06 
50 0.15 0.29 0.42 0.54 0.57 1.13 
50 0.2 0.33 0.46 0.60 0.65 1.28 
50 0.25 0.37 0.50 0.66 0.75 1.46 

 

 

 

Table 2. Relative misfits for truncated MOSN shear stress time histories at 4 receivers in a fixed-
speed rupture simulation (Kostrov’s problem) 
 
 
h (m) η  RMS (%) 

at x = 2 km  
RMS (%) 

at x = 4 km 
RMS (%) 

at x = 6 km 
RMS (%) 

at x = 8 km 
50 0 18.9 10.5 8.38 7.38 
100 0 25.7 18.9 13.6 10.5 
200 0 44.7 25.7 23.6 18.9 
50 0.1 19.4 11.4 10.1 8.16 
50 0.15 20.8 13.1 11.6 9.33 
50 0.2 22.2 14.7 13.1 10.5 
50 0.25 23.6 16.2 14.3 11.5 
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Table 3: Dynamic Stress and Frictional Parameters for Spontaneous Rupture Simulation 

 
Within fault segment of 30 km Parameters 
Nucleation Outside nucleation 

Outside fault 
segment 

Initial shear stress τ0, MPa  81.6 70.0 70.0 
Initial normal stress -σn, MPa 120.0 120.0 120.0 
Static friction coefficient µs 0.677 0.677 infinite 
Dynamic friction coefficient µd 0.525 0.525 0.525 
Static yielding stress τs = -µs*σn, MPa  81.24 81.24 infinite 
Dynamic yielding stress τd =-µd*σn, MPa 63.0 63.0 63.0 
Dynamic stress drop Δτ =τ0 -τd, MPa 18.6 7.0 7.0 
Strength excess τs -τ0, MPa -0.36 11.24 infinite 
Critical slip distance d0, m 0.40 0.40 0.40 
 

 

 

Table 4: Relative Misfits for MOSN and DFM Solutions in a Spontaneous Rupture Simulation 

 
Spatial and 
time steps 

Median 
resolution 

RMS rupture 
time misfits (%) 

RMS peak slip 
rate misfits (%) 

RMS final slip 
misfit (%) 

Δt (s) h (km) Nc  MOSN DFM MOSN DFM MOSN DFM 
3.1e-03 0.0375 6.88 0.14 0.12 4.61 6.53 0.348 0.356 
4.2e-03 0.05 5.16 0.20 0.23 6.65 6.88 0.519 0.539 
6.3e-03 0.075 3.44 0.28 0.48 7.65 7.23 0.858 0.902 
8.3e-03 0.1 2.58 0.38 0.82 6.96 6.51 1.206 1.26 
1.3e-02 0.15 1.72 0.59 1.45 12.5 11.1 1.893 3.51 
1.7-02 0.2 1.29 0.74 2.22 20.4 16.7 3.182 13.3 
2.1e-02 0.25 1.03 0.96 2.90 26.6 21.3 3.263 18.6 
2.5e-02 0.3 0.86 0.99 3.65 30.6 24.1 3.95 25.8 
3.1e-02 0.375 0.68 1.45 4.88 32.2 26.3 4.98 32.2 
4.2e-02 0.5 0.52 1.79 6.95 32.9 29.2 6.74 41.1 
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Figure 1. 
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Figure 2. 
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Figure 3(a) 

 

Figure 3(b) 
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Figure 3(c) 

 

Figure 3(d) 
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Figure 4. 
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Figure 5(a). 

 

Figure 5(b). 
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Figure 6(a) 

 

 

Figure 6(b) 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 
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Figure 12 

 

 

 

 

 

 

 


